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Abstract. Dynamical semigroups have become the key structure for describing open
system dynamics in all of physics. Bounded generators are known to be of a standard
form, due to Gorini, Kossakowski, Sudarshan and Lindblad. This form is often used also
in the unbounded case, but rather little is known about the general form of unbounded
generators. In this paper we first give a precise description of the standard form in the
unbounded case, emphasizing intuition, and collecting and even proving the basic results
around it. We also give a cautionary example showing that the standard form must not be
read too naively. Further examples are given of semigroups, which appear to be probability
preserving to first order, but are not for finite times. Based on these, we construct examples
of generators which are not of standard form.
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1. Introduction

Dynamical semigroups have become the key structure for describing open
system dynamics in all of physics. Their importance for describing processes
with decoherence can hardly be underestimated, and with the new push
towards quantum technologies, where noise is the principal enemy, their role
has been steadily growing. Yet our structural understanding of dynamical
semigroups is curiously limited. For comparison look at the case of reversible
dynamics: In that case we know that any time evolution with continuous
expectation values is implemented by a continuous unitary group, which is
in turn generated by a self-adjoint Hamiltonian operator. So we have a
complete mathematical characterization of all such evolutions. In fact, the
spectral theorem for unbounded self-adjoint operators was one of the first
elements of the mathematical structure of quantum mechanics which von
Neumann developed, and he did it for just this purpose. The analogous open
systems problem would then be the following:

*Based on a talk given by R.F.W. at the 2016 Toruri Conference
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PROBLEM: Consider a Hilbert space $). Characterize all one-parameter
semigroups t — T¢, (t > 0) such that each T; is a completely positive map
on the trace class $(9), and, for any p € T(H) and any bounded operator
A € B(9), we have limy_,o tr(Ti(p)A) = tr(pA).

Of course, this volume celebrates the solution of a fundamental special case
of this problem, namely the case of bounded generators, which is equivalent
to the uniform continuity condition lim;_,¢ |7 — Z|| = 0. But the problem
as written above, i.e., of characterizing also the merely strongly continuous
dynamical semigroups or, equivalently, their unbounded generators, is open.
In spite of this, many applications use unbounded versions of the GKLS-
form of the generator, which we will call the “standard form” in the sequel.
The basic idea for the standard form goes back to Davies [1], and has been
somewhat further developed since [2, 3, 4]. The typical attitude towards this
problem is currently to use unbounded standard forms where it seems natural,
but to avoid the general unbounded case. In fact, at the Torun conference
one prominent member of our community called that a hopeless problem.
Indicative of this state of affairs is that the papers [5, 6] from 1995/96, which
present an example of a non-standard generator have practically not been
cited. Likewise underrated is the work of Bill Arveson [7], which also goes
well beyond the standard form. The last author is indebted to Franco Fagnola
for reminding him of this work, which he earlier had ignored erroneously as
being mostly about the special case of endomorphism semigroups [8].

Therefore, our aim in this survey is twofold: Firstly, we will give a de-
scription of the standard form in the unbounded case, emphasizing intuition,
and collecting and even proving the basic results around it. We also give
a cautionary example (Sect. 3.1) showing that the standard form must not
be read too naively. Further examples are given of semigroups [1, 6], which
appear to be probability preserving to first order (i.e., when looking only at
the generator on the finite-rank part of its domain), but not for finite times.
This phenomenon is akin to classical processes allowing escape to infinity in
finite time. Secondly, we will give examples of generators which are not of
standard form, by modifying the previous examples.

In order to see what kind of characterization of generators might be hoped
for, it is helpful to look for guidance in the classical case. For example,
we could replace T(£)) by L!([0,1]), the integrable functions on the unit
interval, and ask, similarly, for all continuous Markov semigroups on this
space. However, the structure of L'([0,1]) as an ordered Banach space is
identical to the integrable functions on any atomless measure space, like R
of R%. So part of the answer would be diffusions on R¢, recoded in some way
to the unit interval (mapping measure zero sets to measure zero sets). In
particular, not even the dimension d of the underlying space can be seen in
the characterization. As a consequence, the classification is likely to be wild
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and uninformative, unless further structure is imposed. An example would be
the Feller condition, demanding that the dynamics in the Heisenberg picture
take continuous functions to continuous functions. Clearly, the algebra of
continuous functions is sensitive to dimension, and a fruitful theory becomes
possible.

Consider, instead, to replace T($)) by a sequence space like £!(Z). Then
one expects a characterization of the generators in terms of transition rates,
and there is some well-developed theory around this [9]. The quantum case
is now somewhere between these two classical examples: On one hand, the
trace class has some discreteness like £(Z), because it contains many pure
states, and B($)) has many minimal projections. On the other hand, there is
a continuum of pure states, somewhat reminiscent of the continuum of points
in the interval [0, 1].

This classical comparison sets the theme for our survey: We will look
especially at the pure states in the domain of the generator. This will at
the same time give us a useful definition of the standard form and point to
the possibility for non-standard generators. We will give rigorous statements
throughout, while emphasizing intuition. For generalities on semigroups on
Banach spaces we recommend [10]. To fix our setting, we assume throughout
that § is a separable Hilbert space over C. A dynamical semigroup is just
a one-parameter semigroup as described in the above Problem, of which we
assume that tr T;(p) < trp for all 0 < p € T(H). If equality holds here for
all p, we call Ty conservative. Throughout, we will denote the domain of
an unbounded operator £ by dom £. We normally work in the Schrédinger
picture, i.e., in terms of operators 7 on T($). Their adjoints acting on the
bounded operators B($)), a.k.a. the channel in the Heisenberg picture, are
then denoted by 7%, so that tr 7 (p)A = tr pT*(A).

2. Standard Generators
2.1. BOUNDED AND STANDARD GENERATORS

Let us recall the standard (GKLS-) form of the generator, established in the
bounded case. In this case T; = exp(tL), where

Lp = Kp+pK*+) LapLi, with (1)
[0
0 > K+K'+Y LiLa (2)
(e
for some bounded operators K, L,. The set of labels @ may be infinite, in
which case the sum in (2) is taken in the weak operator topology and con-
verges as a bounded increasing sequence, and the sum in (1) then converges

in trace norm.
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A conspicuous feature of this form is the separation into a part associated
with K, and another which is associated with the jump operators L,. An
intuitive way to understand this is the observation that exp(t£) must be a
completely positive map norm close to the identity. This means [11] that it
must also have a Stinespring dilation close to that of the identity. Now the
only Kraus operator in the decomposition of the identity is the unit operator
T, so one of the Kraus operators of exp(tL) can be chosen to be close to 1,
say ~ I + tK. The others will then have to scale like ~ v/tL,, which gives
Tip = p + tL(p) + O(t?) with the above generator. The dominant Kraus
operator (I+tK) belongs to a pure operation, i.e., an operation taking pure
states into pure states [12, Sect. 2.3]. The only difference to the unitary case
is that this part now typically loses normalization, so the evolution takes
pure states to multiples of pure states.

To summarize, the generator splits into one part, which by itself generates
an evolution taking pure states to pure states and a second part, which is
completely positive. The work of Davies and the stochastic calculus suggest
the following terminology:

DEFINITION 1 A no-event semigroup on a Hilbert space $) is a dynamical
semigroup T,°, t > 0 such that every pure state p = [¢)¢| is mapped to
a multiple of a pure state. It is necessarily of the form T,p = CypC; with
Cy = exp(tK) a strongly continuous contraction semigroup of Hilbert space
operators.

Note that this definition no longer requires K to be bounded. Moreover, it
also makes sense in the discrete classical case, i.e., for semigroups on ¢!(X) for
some countable set X. Pure states ¢, are then of the form concentrated on a
single point € X, corresponding to the probability distribution 6,(y) = 4.4 -
It is easy to see that a no-event semigroup cannot change z, i.e., it must be
of the form

(T)(02) = e 6, (3)

where p : X — RT describes the loss rate from state . The function g
need not be bounded. Just as in the quantum case, the whole generator will
differ from the no-event part by a positive term, which describes the rates of
transitions from x to other states y, resulting in the usual rate matrix.

The basic idea of constructing the generator (classical or quantum) is
that the positive term in the generator will make the semigroup more nearly
conservative, i.e., it will compensate some of the normalization loss in 7,°.
But, due to the overall (sub-)normalization condition tr 7;(p) < trp, there
cannot be more transitions than there is loss. This means the positive part
must be bounded with respect to the normalization loss of the no-event part.
Thus all unboundedness is tamed, once it is under control for the no-event
part. Of course, in principle, there might not be such a no-event part in the
generator. But for the moment, we define the “good” case by this property:
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DEFINITION 2 A dynamical semigroup is called standard if it is the mini-
mal solution arising from a completely positive perturbation of the generator
of a no-event semigroup.

We have not yet defined “the minimal solution” in this sentence, and this
will be the task of Sect. 2.3. Standard generators look just like (1), with the
following changes: K is the generator of an arbitrary contraction semigroup
on 9, and the jump operators need to be operators

Lo:domK — § with Y ||Lag|* < —2Re(p, K¢). (4)

The generator is thus naturally split into £ = £° + P, i.e., no-event part and
completely positive perturbation, namely

LIoN)) = [Ko)| + [o)EY| and  P(oXy]) = Y |Lad)La¥|. (5)

The natural domain for all these operators is (dom K )X, defined as the set of
finite linear combinations of rank 1 operators |¢)¢| with ¢,9 € dom K. In
particular, the expression for P does not require the adjoint L}, to be even
defined, which is important because it might not exist (see Sect. 3.1 below).
The effect of the minimal solution construction is then to extend the domain
of £ beyond (dom K )><, so that in the end we may well get some p € dom L,
for which the individual terms £%» and Pp are no longer well defined.

2.2.  EXIT SPACES AND REINSERTIONS

In this section we will give a dynamical interpretation of the standard form,
which forms the background for the term “no-event” semigroup. This inter-
pretation is consistent also with the unbounded standard form. It provides
the basis for the more technical statement that, for a standard generator, all
the unboundedness is already determined by the no-event part, relative to
which the positive perturbation P is bounded. This section provides some
background, and is not needed to understand the later sections.

The idea behind the term “no-event semigroup” is that it describes the
evolution for as long the system has not yet been captured, i.e., up until a
detection or “arrival” event [13,5]. Modifying a Hamiltonian by absorbing
terms —iK with K > 0 is, in fact, one of the standard ways to describe
a detection process. By choosing K to be spatially localized in a region,
we get a model of a detector in that region. The probability for detection
in the time interval [¢,s], starting from an initially normalized state p is
then, by definition tr T,0p — tr T2p. Clearly, this defines a POVM for the
arrival time distribution, which also allows for the possibility that the particle
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never arrives. We would also like to find the observables which are jointly
measurable with arrival. For example, when there are several detectors, we
need to know which of them fired. This is naturally captured by the notion
of the exit space of a contraction semigroup [13]. For a semigroup e we
consider the normalization loss as a quadratic form on dom K, and define
an exit space for K as a pair (£, ) of a Hilbert space £ and a linear map

j :dom K — & such that, for ¢, ¢ € dom K,

(.59 = — 5 (UG = ~(Kb.0) + @ Ko).  (6)

There is always a unique minimal exit space: The separated completion of
dom K with respect to the above scalar product. However, for reasons which
will be apparent later, we also allow non-minimal exit spaces, possibly even
with an inequality < instead of equality in (6).

Now if F' € B(€) is an effect operator describing some yes-no ques-
tion asked at exit time, we set the probability density for obtaining that
result at time ¢, on an initial preparation |p}¢| with ¢ € dom K, to be
(jetK ¢|F|jet® ¢). More formally, we consider a map J : § — L3Ry, dt; E).
The range of J is the space of £-valued functions on R, which is canonically
isomorphic to L?(Ry,dt) ® £, but the function notation is more helpful for
our purpose. We set (J¢)(t) = j(e¢) € € for ¢ € dom K. Then J extends
to $ by continuity, because

lol? = [ at e ol = — [ar Lol
0 0

= ol - Jim [ 6]2 < [0 ™)

The joint probability for an F-detection in the time interval [t,s] on the
initial state p is then

s

(o (e © F)I) = [ dr (e 5 olFljer o). (8)
t

Here the right-hand side just uses the density mentioned above for ¢ €
dom K, and the left-hand side is the same for p = |¢)¢|, but makes sense for
arbitrary p by virtue of the continuous extension.

We can turn the arrival time detection into a dynamical, repeatable pro-
cess on §) by introducing a reinsertion map, which transforms the “state upon
exit” into a new state of the system. This is done by a completely positive,
trace non-increasing map S : T(E) — T($H). Then the effect F' in (8) may
arise from a measurement on the original system, including an arrival time
measurement of just the same kind.
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Before iterating this idea, let us simplify the description by introduc-
ing the Stinespring dilation, i.e., a contraction v : £ — M ® H, so that
S(0) = trqvov*. Observables on 91 then describe the information that can
be extracted at the moment of a jump, so we call 91 the transit space. Com-
posing v with j we get a map j = vj : dom K — 91 ® $), which, apart from
the special form of the image space satisfies exactly the requirements (6) for
an exit space (possibly with an inequality, if S can reduce the trace). In this
sense a process of exit and reinsertion is completely specified by an exit space
of the special form (M ® 9, 7).

From now on we will take J to be defined by j. We can iterate this
operator to a sequence of maps J™ : § — (L2(Ry,dt;€))®" ® H, with
JO = 15, JV = J, and J®tD = (I®" @ J)J™. This has the same
interpretation as J, only that we are now looking at n consecutive events.
The n time arguments of wave functions in this space are the time increments
between successive events. In order to get a dynamical semigroup out of
this iteration, we need to fix a time interval [0,7] and look only at events
happening during this interval. We also need to evolve the system up to time
7 after the last event with a further application of the no-event semigroup.

Thus we set JT(") to be a map between the same spaces as J™, but modified
as
(M) (tr, ... tn) = (1% @ T2t T )@ty L), (9)

whenever ZZ t; < 7, and zero otherwise. So JT(") is a dilation of the evolution

conditional on exactly n events happening in that interval. The conditional
evolution up to the end of this interval is ’TT(n) P = trevents JT(n) pJT(n) * where
the trace is the partial trace over the tensor factor (L?(R,,dt; £))*". Then

Trp =020 ’7}(") is a dynamical semigroup. In fact, it is the same minimal
semigroup as constructed in the next section. We will not go through the
proof of this assertion, which is best done via the Laplace transforms of the

’TT(n), which turn out to be the exactly the terms in the sequence (16) below.

Experts in the stochastic calculus will easily recognize the dilation con-
struction here. In fact, when we write the time arguments in the space
(LR, dt; £))®™ not as increments but as the absolute event times 7; =
22:1 t;, we get wave functions defined on ordered time arguments, which
have unique symmetric and antisymmetric extensions to arbitrary n tuples
of times, yielding the fermionic and the bosonic stochastic integrals. Our
focus here was just the dynamical semigroup, however, and specifically to
trace the implications of unboundedness through the construction. Indeed
the turning point is (7): Once J has been extended from dom K to a bounded
operator on all of §), the entire further construction is in terms of bounded
operators, and no more domain questions need to be addressed.

The exit & reinsertion picture suggests other standard ways to look at
the generator, which are brought together with the form (4) in the following
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proposition. It also lists (in (d)) the form we prefer for the next section.
For the action of the exit space injection j on mixed states we introduce the
linear operator jX : (dom K)X — T(&) given by jX(|¢)w|) = |i¢)jv|. Then
we have:

PROPOSITION 1 Let t +— exp(tK) be a contraction semigroup on $) with
generator K and minimal exit space (€,7). Then standard generators with
no-event semigroup TLp = e pe!™” are equivalently characterized by any of
the following sets:

(a) Completely positive “reinsertion” maps S : T(E) — T(H) with
trS(o) <tro.

(b) Non-minimal exit spaces of product form, i.e., maps j: dom K — N®H
such that ||7¢||*> < 2Re (¢, K ).

(¢c) Maps P : (dom K)X — T($), which can be written in the form (5) with
Jgump operators Lq, satisfying (4).

(d) Completely positive maps P : dom L — T($), with tr Pp < —tr L
for all positive p € dom LY.

The correspondence is given by the restriction from (d) to (c), and by unique
L0-graph-norm continuous extension in the other direction. Between (a),(b),(c)
it is given on (dom K)X by P = SjX = (T @ trm)jX. Possible choices of jump
operators correspond precisely to the choices of Kraus operators for S or a ba-
sis eq €N, with S(o) =Y, Moo M}, via Lo = Maj and jo =), €q ® Lao.

Proof. The equivalences are largely trivial to verify on (dom K)X, or have
already been described in the text above. The only statement not of this kind
is the continuous extension (¢)—(d). Here we note that (dom K)X C dom £°
is invariant and dense in T(£)), hence a core, so that continuity will guarantee
an extension to dom £°. Since S is clearly trace norm continuous, the identity
P = SjX shows that we only need to prove the continuity of jX, i.e., the
statement that jXp, — 0, whenever p, — 0 and £%p, — 0 (each limit in
trace norm). We will do this by establishing the estimate ||;Xp|| < ||£%p]|.

By definition of (dom K)X, we can write p = Zév 70| de)(1pe| with rp € C
and ¢y, 1y € dom K. Now on the finite dimensional span of the ¢y, 1, we can
perform a singular value decomposition and get a more canonical form of p,
where 7, > 0, and each of the families {¢/}, {t¢} is orthonormal. Then we
have

1%l = ||D relioavel| < D rellioellliul
L l

< Z%(Ilj¢z\|2+\|j¢e||2) = —Re Y re((¢e, Kor) + (Kb, br))
t

14
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= —Re Zré(<¢myK¢Z><¢Zywm> + <¢m,¢é><K7/)é,¢m>)

lm

= —RetrWL, (10)

where W =" |ty )(¢m|. This is a partial isometry, so ||W|| = 1, and hence
1% pll < 11£°p])- 0

2.3. THE MINIMAL SOLUTION

Adding a further term (“a perturbation”) to a well-known “simple” gener-
ator is, of course, commonplace throughout quantum mechanics and more
general evolution equations. Very often one considers perturbations which
are relatively bounded with respect to the given generator. In this case [14]
the domain of the perturbed generator remains the same. The perturbations
considered here will usually not be of this kind. There are two equivalent
versions of the construction. One is based on the resolvent series [1], and
one on the iteration of integral equations [5]. Since the resolvent version can
be stated slightly more compactly, and we will need to consider resolvents
anyhow, we will choose this version.

The resolvent of a semigroup 7; = exp(tL) is given, for any A > 0, by the
integral

Ry = (-0 = /dte"\tﬁ. (11)
0

From this definition it is clear that R, is completely positive, and satisfies
the norm bound [|AR,|| < 1, and the resolvent identity Ry — R, = (1 —
AMRAR,. Conversely, any family of operators Ry : T(§)) — T($) satisfying
these conditions defines a dynamical semigroup, which can be recovered by
the formula .
. -n . n n

To=tim (1= L) " = lm (Ra) (12)
Here the middle part is provided only as a formal expression to explain what
the right-hand side should look like (but see [10] for a proof). Moreover, we
have, for any A > 0,

dom L = RA(T($H)), with LRyp = ARxp—p. (13)

Now consider a generator LY, typically (but not always) of a no-event
semigroup, from which we would like to construct a new generator £ = L0+ P
with P completely positive. For the construction of standard generators the
forms of £° and P are given in (5). The domain of £ should be at least

1740015-9
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dom £°, and we want the normalization of the new semigroup to be non-
increasing. This fixes the normalization condition (4). Moreover, for p > 0,

0 > tr(L24+P)RYp = tr(AR\p — p+PR3p) > trPRYp—trp. (14)

Hence PR?\ is everywhere defined, completely positive, and trace nonincreas-
ing. Therefore, |PRY|| < 1.
Formally, we get the resolvent R of the perturbed semigroup from

Ry —RY = RA<()\ L~ (- c))Rg = RyPRY. (15)

Still proceeding formally, we can use this to determine R, by iteration, or
equivalently to solve the Neumann series for (Z — PR})™! to find

Ry = S RYPRY)" (16

n=0

The basic algebra here is quite standard, and used also for the relatively
bounded perturbation theory of generators. In that case [|[PRY| < 1, so the
series obviously converges in norm. Moreover, one can then write the factor
RY outside the sum, so that dom £ = R,(T(H)) C RY(T(H)) = dom LO,
and the domain will not increase. This will be different now. We state the
basic construction result without assuming that £ is a no-event semigroup.
This is because this generalization will be needed in Sect. 4. For use in that
section we also provide Lemma 1, showing that sometimes the domain does
not increase.

PROPOSITION 2 Let LY be the generator of a dynamical semigroup, and
let P : dom LY — T($)) be a completely positive map such that, for 0 < p €
dom £,

trP(p) < —trL9%p). (17)

Then PRY is a completely positive operator on T(§)), and the series (16)
converges strongly to the resolvent Ry of a dynamical semigroup. X = R
is the smallest completely positive solution of the equation X = Rg\ + XPRg
i completely positive ordering, and is hence called the minimal resolvent
solution associated with the perturbation P.

Proof. 'We only sketch the key idea, which makes clear why the series indeed
converges, even without assuming ||PRY|| < 1. The partial sum truncated

at n is just the n-th iterate Rg\") defined by Rg\o) = Rg)\ and

RUY = RS+ RUVPRY. (18)

1740015-10
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We will prove by induction that for positive p, we have tr )\Rg\n) p < trp. In-

deed, this is true for n = 0, like for the resolvent of any dynamical semigroup
and, by the induction hypothesis,

tr )\Rg\nﬂ)p tr )\Rgp + tr PRgp

tr AR p —tr LRYp = tr ARSp —tr(ARSp — p) = trp.
Hence the sequence /\Rg\n) p is increasing and uniformly bounded in trace
norm, and therefore convergent in norm. By linearity this extends to the
trace class, and applying it to a matrix of trace class operators we conclude
that the limit R is a completely positive operator.

If S is any completely positive solution of the equation in the Proposition,

<
<

we have that (S — Rg\o)) = (8§ — RY) is completely positive, and because
(S —R"Y)y = (8- RM)PR, (19)

this persists through the iteration, and the result follows by taking the limit.
O

LEMMA 1 If, in the setting Prop. 2, the perturbation P has finite rank, we
have dom £ = dom £°.

Proof. We will show that, for some n, ||(PRS)"|| < 1. Then the resolvent
series (16) converges in norm, even without the factor R in each term, so
as argued after that equation, the domain will not increase.

By definition, a finite rank operator and its adjoint can be written as

PRYp = Zaitr(Sip) and (PRY)*X = ZSitr(o—iX), (20)

where the sum is finite and the o; € T($) and the S; € B(H) are chosen
linearly independent. The action on the linear span of the o; is given by
the finite dimensional matrix P;; = tr S;o; in the sense that 77729\ > jTjoj =
222 Pijxj)oi.

Because ||[PRY|| < 1, all the eigenvalues of the matrix P must be in the
unit circle. If there are no eigenvalues of modulus one, the powers of P
and hence of PR?\ contract exponentially to zero, and we are done. Now
suppose P has an eigenvalue of modulus one. Then so does its transpose,
and we hence have an operator X with (PR$)*X = wX with |w| = 1. Then
2-positivity implies

(PRY)"(X*X) > (PRY)"(X)"(PRY)"(X) = X*X. (21)

Hence iterating (PR?\)* on X*X gives an increasing sequence, which is, how-
ever, bounded by || X*X|/1, because [[(PR)*|| < 1. Hence this sequence
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must have a weak limit, and because (PR9)* is normal, this limit is a fixed
point. Therefore P and its transpose, and consequently (PRg) must have a
non-zero fixed point o. But then the resolvent series for Ryo has all equal
terms and hence diverges, in contradiction to the trace estimate in the proof
of Prop. 2. O

2.4. GAUGING AND PURE STATES IN THE DOMAIN

The Kraus decomposition of a completely positive map is not unique, since it
depends on the choice of a basis in the dilation space. Thus we may transform
the jump operators linearly among each other by a unitary matrix without
changing the generator. This corresponds to a basis change in the transit
space . In addition there is a change of Kraus operators of 7; for small
t, which mixes the vtL, and 1 4 tK. This is well-known in the bounded
case, and is sometimes called a change of gauge. We will verify here that it
survives mutatis mutandis in the unbounded case.

LEMMA 2 Let K, L determine a standard generator as in (4), and let A, € C
with >, |Aa|? < 00, and B € R. Then for ¢ € dom K set

Li¢ = Lad+ (22)
Ko = Ko+ 3 NaLatt g (i8+ 3 Pal?)s. (23

Then the sum in the second term in (23) converges in norm. Moreover, K' is
a contraction generator with dom K’ = dom K. The standard generators for
(K,L) and (K',L') coincide on (dom K)X, so that they determine the same
minimal solution.

Proof. First we show that || >°, AaLad| is K-bounded. Using the Cauchy-
Schwarz inequality we have, for arbitrary ¢ € $), ¢ € dom K, and € > 0

P s SRS Lad)P < Al Y Laol?

> Ralth, Lad)

IN

A
A2 2Re (6, Ko} < 0] 4 (5110 (el o)
A
eIl K@l + 5-ll9l)*

IN

where we have introduced the abbreviation 4 = Y [Aa|?, used (4) at the sec-
ond line, and the estimate 4zy < (x +v)? at the last. Taking the square root
and using that 1 is arbitrary, we get || >, AaLa @l < €| K| + (A/(2¢)) 4],
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and, including the last term in (23), ||(K' — K)¢|| < €||K¢|| + C||¢||, for some
constant C. That is, the perturbation is infinitesimally K-bounded. Accord-
ing to [15, Theorem IV.1.1], € < 1 is enough to conclude that K’ generates a
semigroup with the same domain as K.

It remains to show that K’ is the generator of a contraction semigroup,
i.e. that it is dissipative, which for a Hilbert space operator just means
2Re (¢, K'¢p) < 0. For this we get

2Re (¢, K'¢) = 2Re(p, K¢) —2ReZ (Aat; Lad) — Z( o, Aa )
= 2Re (¢, K¢) +Z\|La<z>||2 Z\|La¢+aa¢||2

Then the first two terms together are < 0 because of (4), and the third is
obviously < 0.

The equality of the generator then follows by the same elementary algebra
as in the bounded case. (]
A key result for the construction of non-standard generators is the following.
It uses a condition from [16], which is related to the question whether the
semigroup on the trace class is the dual of a semigroup on the compact
operators. We show in Sect. 3.1 that it may be violated. On the other hand,
it is quite easy to verify in our two main examples.

PROPOSITION 3 Let L and Ly be as in (4). Assume in addition that each
L, is closable with dom LY, C dom K* and ", | LL f||? < oo for f € dom K*.
Then |p)1| € dom L for some ¢, € $ implies that ¢, € dom K.

Proof. Following Theorem A.2 in [16], the semigroup satisfies the so-called
“forward master equation” with the generator

(f,(Lw)g) = (K*f,wg) + (f,wK*g) + > (L%f,wLig) (24)

for w € dom L.

Now let w = |¢p) 1| with ¢, not necessarily in dom K, and pick a vector
g € dom K* such that (¢, g) = 1. This is possible because dom K* is dense.
Now we apply Lemma 2 with A\, = <w, g). This leads to an equivalent
form of the generator, for which, however, (¢, L% g) = 0. Therefore, (24)
simplifies to

(f, (Lw)g) = (K*f,0) (¥, 9) + (f,0)(, K7g) . (25)
Solving for the first term on the right, using (v, g) = 1, we find
(K*f,0) = (f| L(w)g — o, K7g)) . (26)

Therefore ¢ € dom K** = dom K, and K¢ = L(w)g — ¢{1, K*g). By the
same argument applied to the hermitian conjugates we get ¢ € dom K. 0O
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3. Examples of Standard Generators
3.1. NON-CLOSABLE JUMP OPERATORS

A fundamental example of a contraction semigroup with unbounded genera-
tor is the half-sided shift on $§ = L?(R*,dz), given by

(Si)(x) = Y(x+1). (27)

Its generator K is differentiation, so dom K consists of functions, which have
an L?-derivative. This means that they are, in particular, continuous, and
hence, for ¢ € dom K, the boundary value ¥ (0) is well-defined. This directly
determines the exit space £ = C with ji» = ¢(0). Indeed,

oo

(5,5 im0 = — [ A TEI6) = PO60) = (6) . (29

dt
t

Hence the standard generators with no-event semigroup implemented by S
are parametrized by the cp map taking a one-dimensional system on exit £ to
the system Hilbert space, i.e., by a state Q € T(). The intuitive picture is
that whenever the system hits the boundary, it is reset to the “rebound” state
Q. The number of jump operators needed here depends on the mixedness of
the rebound state . When Q = >°_ |¢a)(¢a| is the spectral resolution (¢q
orthogonal but not normalized), we can set L, : £ — $ to be Loz = 2¢,.

As operators on Hilbert space these jump operators are very ill-behaved.
Formally, they would come out as L, = |4 )(0|, where ¢ is the Dirac-d at the
origin. This L, is not a closable operator, intuitively, because the value of a
general L2-function at a point is an ill-defined notion. More formally, we can
find a sequence 1, € dom K = dom L, such that |1, || — 0, but ,,(0) = 42.
Then Lo, = 42¢, # 0, independently of n. Hence the closure of L, would
have to map 0 into 42¢,, which is impossible for a linear operator. Since the
usual definition of adjoint works well only for closable operators, the jump
operators in the standard form (1), and even more so their adjoints, have to
be interpreted with care. One can build a special notion of adjoint for this
purpose [17], but it is better to take the view of Prop. 1 and take L, = M,J,
i.e., as completely determined by the bounded operators M. In this way all
the difficulties with singular L, are controlled by the normalization loss of
the no-event semigroup.

This is analogous to a well-known example of a generator perturbation
for which the added term by itself makes little sense, namely point potentials
(6-function potentials) for Schrodinger operators. Again, multiplication by
a d-function, which is formally the potential “added” to the Laplacian, is
a crazy operator by itself. However, as a perturbation of the Laplacian it
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makes sense and leads to a well-defined self-adjoint operator, which has an
alternative description as the Laplacian with a modified boundary condition
at the origin. The whole construction is quite stable, and we can also obtain
the perturbed operator as the strong resolvent limit of Schrodinger operators
with suitably scaled potentials with small support around the origin.

The example of this section is also discussed in [18], where it is shown
that Arveson’s “domain algebra” [19] can be trivial.

3.2.  QUANTUM BIRTH PROCESS

3.2.1. The process

A standard example of the classical theory is the so-called pure birth process.
The state of the system at any time is given by an integer n, from where it
can jump to n + 1 with rate p, > 0. The generator thus acts on p € /(N) as

(o) = { fomrln D pee) =

The case distinction can be avoided by the convention p(—1) = 0. By tele-
scoping sum one verifies ) | (Lp)(n) = 0, so the process appears to be conser-
vative. On the other hand, noting that the expected time for the transition
from n to n + 1 is u, ! it seems possible that the process reaches infinity in
finite time when pu, increases sufficiently rapidly, i.e.,

1
— =7 < ™. (30)
n M'I’L

Indeed this is part of the well-established lore on this process (see Sect. XVII.4
in [20] and below). Our interest here is in a closely related quantum process,
which is a standard semigroup on $ = ¢?(N) with K and a single jump
operator L given by

1

Kn) = —Zualn), domK = {y e A(N) : Y u2l(m)? < oo},
n=0

Lin) = upln+1), domL C domK,

where {|n)} is the canonical basis of the Hilbert space. As usual, we denote
by L% = Kp+ pK* the no-event generator, which corresponds to the first
term in the expression for the standard generator

(lLplm) =~ (n + i)l plm) + /i T T (0= Uplm — 1) (31)

This is the quantum analogue of (29), a simplified and generalized version of
a process first studied in [1, Example 3.3]. It reduces precisely to the classical
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case for purely diagonal density operators. We therefore call the process gen-
erated by K and L the quantum birth process. Like its classical counterpart
it is formally conservative, but due to the possibility of escape to infinity it
may actually fail to be conservative. It will then be interesting to look at the
details of the escape: Is there any quantum information “coherently” pushed
to infinity?

For this simple example the resolvent series (16) can be summed explicitly.
We get, for any p € T(),

1 min(n,m)

= k n — m —
(n|Raplm) = Y ——" kZ:O Phm (n—klplm — k), (32)

A+
k

P = [y noitm (33)
j=1

A+ %(:un—j + /Lm—j) .

Thus the domain of the generator of the minimal solution is dom £ = {Rp’ :
Pl e X(H)}, and Lp = LRyp' = ARxp' — /.

In general, it is not easy to determine dom £ from the expression (1), here
(31), which merely expresses the generator on the domain (dom K)X. On the
other hand, the matrix elements on the right-hand side of (31) make sense
for any bounded operator p. It turns out that this reading of (31) correctly
expresses the extension by minimal solution:

LEMMA 3 For p € dom L, and all n,m € N, equation (31) holds. Con-
versely, if, for some trace class operator p, the right-hand side of (31) gives
the matriz elements of a trace class operator, then p € dom L.

Proof. Both (31) and (32) involve finite sums only for fixed n, m. Therefore,
we can consider them to define extensions £ and Rﬁ)\ of £ and R, to arbitrary
matrices p. It is straightforward to verify that EﬁRﬁ)\ = )\Rﬁ)\ — It = Riﬁﬁ.
Take the first equation, and apply it to some p' € T(£)). This shows that
LR = ﬁjRﬁ)\ = )\Rﬁ/\p’—p’ = ARy —p = LRy, i.e., LF and L coincide
on dom L.

Now suppose that p and Lfp are both trace class. Then by the second
equation p = Rﬁ/\()\p —Lfp) € R&S(ﬁ) =R)\T($H) =dom L. O

3.2.2.  Conservativity

From the integral (11) one sees that 7; is conservative if and only if tr A\R\p =
tr p for all p. The trace of (32) depends only on the sums with n = m, and
hence the conservativity is exactly the same as for the classical problem. The
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resolvent actually contains more information. Let m(t) = —d/(dt) tr T¢p be
the “arrival probability density” at infinity. Then its Laplace transform is

= /dte_)‘t m(t) = 1 —trARyp. (34)

Starting from p = |n)n|, and introducing the abbreviation ¢, = pnta/(A +
Hnta) We get from (32)

m(A) = 1—trARy\|n)n| = 1_ZA+Mn+kH)\in/j:+a
= 1—53 (1—cx) Hca = 1531 HCO‘
k=0 -

o

- U 1+)\u (35)

This has a straightforward probabilistic interpretation: The probability den-
sity of a sum of independent random variables is the convolution of the in-
dividual densities, corresponding to the product of the Laplace transforms.
Hence the “arrival time at infinity” is the sum of infinitely many independent
contributions, each exponentially distributed with density poe #o!. When
T = . pgl = oo, this sum is actually infinite with probability 1, and
m(A) = 0.

3.2.3. Domain increase

Next we consider the question whether the inclusion dom £ O dom £° is
strict. For this it is helpful to note that for any p € dom £ and ¢ € Z the
limit !

©4(p) = Hm 5 (pn + piniq)(nlpln +q) (36)

n—oo

exists. Indeed, setting p = Ryp' this is clear from (32), using p%,, < 1 and
P € T(H). Moreover, if p € dom £° the matrix elements in the above limit
belong to the trace class operator £%p, and therefore are summable and have
to go to zero, so ®,(dom L%) = {0}. We note that ® plays a special role
since, for p € dom L,

@o(p) = lim D" (nlmiplm) — pnos(m—1lplm-1)) = ~trLp (37)
m=0

is exactly the infinitesimal normalization loss. When the semigroup is not
conservative (the only case we consider now), we can directly find an element
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on which this does not vanish:

o= “in)n|, with @o(o)=1. (38)
Un,

n

For the other values of ¢ the existence of such elements depends, in fact, on
how fast the p,, grow.

PROPOSITION 4 Let the rates p, grow moderately in the sense that, for

all g,n,
< £

1 - fnte (39)

[in
for some constant ¢ independent of n. Then, for any q € Z, let

n

2
ol = —|n¥{n+ql. 40
> e lnn+dl (40

n

Then o € dom £ and ®y(09) = 64y

Moderate growth covers rational functions, stretched exponentials like

tn ~ exp(an®) with a < 1, but exponentials p, = e*” clearly do not satisfy
this condition.
Proof. The matrix (40) is clearly positive definite, and tro? = 7 < oo. The
critical question is whether Lo9, as defined by (31) is trace class. Like o?
itself, Lo is of the form ) an|n)n + ¢|, and such an operator is trace class
iff ", |an| < oo (think of this as a diagonal operator multiplied with a shift
from one side). Thus we have to show that the sum

> lmlLotln+ )l = D[ -1+ 2—”"”’“‘"*“( (41)

Hn—1 + Pntqg—1
is finite. Introducing the function

2vab  (Va—Vb)? < (1 b>2

a+b a+b o

glab) = 1— (12)
we find that for moderately growing i, the terms in the sum (41) are bounded
by (¢/n)?, so the sum converges. O

EXAMPLE 4 (Exponentially growing u,) Let us put p, = a™ for some a >
1. Then, for ¢ # 0, the sum (41) has all equal terms, and hence diverges.
While the limit (36) still exists for p = 0%, and is equal to 1, this does not
help to establish domain increase, because 0¢ ¢ dom £. Nor is there any
other choice of p of which we can prove in this way that p € dom £\ dom L°:
For any p € dom L we get ®,(p) = 0.

1740015-18



Open Syst. Inf. Dyn. 2017.24. Downloaded from www.worldscientific.com
by NICOLAUS COPERNICUS UNIVERSITY on 01/11/18. For persona use only.

Unbounded Generators of Dynamical Semigroups

Consider the resolvent sum (32). Each factor in p ,, with m =n + ¢ is

VEn=ifm=j _ _ 2/Fajfm=j _ 2097

< < =: 7. (43)
A+ %(Nn—j + fm—j) Hn—j + Hm—j 1+ af

Hence p'ﬁw 4+q < ~*, which is summable with respect to k. Assuming ¢ > 1
without loss,

1
2, (Rap)] = lim 5 2 Tl
no\+ §(ﬂn + ,un+q)

> P neqnloln +q)
k
n
< tim Y o (14)
k=0

where we abbreviated r, = |[(n|p|n+¢)|. This is a summable sequence because
p is trace class. The sum is consequently summable as the convolution of two
such sequences, and therefore goes to zero as n — oo.

3.2.4. No new pure states

We have seen that dom £ is properly larger than dom £°. But are there also
additional pure states in this larger domain? We could use Prop. 3 to answer
this in the negative. Instead we give a simple alternative argument based on
the range of resolvents.

PROPOSITION 5 Let £ and LY be as above and |¢))| € dom L. Then
|o)¥] € dom £, i.e., ¢, € dom K.

Proof. Since |¢p) 1| € dom £ we may write |¢p) )| = Ryp for some p € T(H).
Let m be the smallest index for which p|m) # 0. Then in the formula (32)
for the resolvent only the term k = 0 gives a non-zero contribution. Noting
that pQ,, = 1 we get

1
(n[Raplm) = (nlplm) for all 7,
A+ 3 (n + )
Raplm) = (A4 pm/2 = K) " plm),

¢ (Y,m) € ()\+um/2—K)_1.6 = dom K .

Now (1|m) cannot vanish, because p|m) # 0. Hence ¢ € dom K, and the
same argument applied to p* gives also ¢ € dom K. O
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3.3. DIFFUSION ON DIAGONALS

This is the basis for the example of a non-standard generator given in [6].
The basic idea is very similar to the quantum birth process, and the main
conclusion is the same. However, the presentation in [6] was rather sketchy
and incomplete, and did not mention an argument along the lines of Prop. 3.
These clarifications were the focus of our collaboration, and have been inde-
pendently summarized in [18]. Therefore we can be brief here.

The system Hilbert space in this case is § = L?(Ry,dz). In order to
stress the analogies we use the same notations as above for the generators.
They are:

2
K = ﬁﬁ domK = {yp €9 :9(0)=0, 9" €H}, (45)
L = \/5% domL = domK . (46)

K generates a diffusion with absorption at the boundary point 0. Similarly,
when seen as acting on integral kernels p(z,y), £ generates a diffusion with
a degenerate diffusion operator (% + %)2, corresponding to diffusion along
the diagonals x — y = const with absorption at the boundary of the pos-
itive quadrant. Both semigroups can be solved explicitly by the reflection
trick: The semigroup without the absorbing boundary condition is transla-
tion invariant, and acts by convolution with a Gaussian kernel. The solution
with absorption is then obtained by first extending the initial function to
an antisymmetric one on the whole line, applying the Gaussian kernel and
restricting to the half line afterwards.

In this way we get the time evolution (see [18], correcting [6]), written in
terms of its action on integral kernels w : Ry x Ry — C representing trace

class operators:

Tw)es) = 5= 0/ de 3 (-0 exp { = ghoinGa) = (-1}

X wé+[r—yl, &+ [y —z]4). (47)

Here we wrote x4 = max{0,z} for the positive part of a number. By inte-
gration (11) we get the resolvent

(Raw)(@,) = / dE FEY(E) w(€ + [r — ylarb + [y — 214 (48)
0
1
U = —= > (—D"exp? — VAmin(z,y) — (-1)"¢ . (49)
A 2\/Xn§0:’1 p{ Yy }
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Since fg’y = f\ﬂ’o = 0 we must have Ryw(0,y) = Ryw(z,0) = 0 for all w.
Hence, for all w € dom £, w(0,y) = w(x,0) = 0. Similarly, one sees that the
kernel w(x,y) has to be continuous for w € dom L.

To find the normalization loss we can integrate (47) to get

e [ 3
tr Tiw = trw—/d§ erfc(z—\/z)w(ﬁ,ﬁ), (50)
0
where erfc denotes the complementary error function. We substitute & —
2v/tn and take from [18] the information that, for w € dom £, we have
w(z,z) = Az + o(z) as * — 0. Then by dominated convergence, and us-
ing [;° dzxerfe(z) = 1/4, we find

tr Tiw = trw—2\/5/d77 erfc(n)w(Z\/En,%/En) = trw—tA +o(t). (51)
0

The diagonal derivative A = —d/(dx)w(z, z)|,—o plays the same role as ®¢(p)
in the previous section (compare (37)).

The crucial observation is once again, that |¢)(¢| € dom £ implies |¢) 1| €
dom £°. Two techniques are available for showing this: In analogy to Prop. 5
one can directly show that (R w)x € dom K for suitable x. But in this case
it is preferable to invoke Prop. 3.

4. Examples of Non-Standard Generators

We focus here on the examples, which come immediately out of the two ex-
amples studied in the previous section: The quantum birth and the diagonal
diffusion semigroups. In both cases we considered a standard generator L,
arising from positive perturbation of a no-event generator £°. Now we go
one step further and add to £ another positive term, leading to the generator
dom L of a conservative semigroup. This perturbation again follows the min-
imal solution pattern (Sect. 2.3) with a rank one perturbation, for simplicity.
That is, we set

Lp = Lp—tr(Lp)p, dom £ = dom L. (52)

The added term is completely positive on dom £, because normalization loss
is negative. The equality of domains follows from Lemma 1. In dynamical
terms, the process will reset to p, whenever there is an “arrival event”, which
under £ would mean a loss of normalization: in the quantum birth case, this
will be an arrival at infinity, and in the diagonal diffusion case an arrival at
the origin.
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dom £ _:
I !
dom £ ~=oss—
Y o o) !
dom £0  n———

Fig. 1: Generators and their domains in the construction of a non-standard
generator L.

We have here two construction steps in which a completely positive term
is added to the generator. Why can they not be fused into a single step
adding both terms simultaneously? Indeed, if this were possible, £ would
be, by definition, a standard generator. The key observation is that L is
infinitesimally trace preserving on dom £°, so P = £ — £° is already as
large as it can be. However, since the semigroup exp(tL£) is not conservative,
dom £ must be properly larger than dom £°, because a generator which is
infinitesimally conservative on its full domain would generate a conservative
semigroup. The term added when passing from £ to £ vanishes on dom £,
so is strictly associated with the “new” part of the domain. The various
generators and domains are graphically summarized in Fig. 1.

The same relations may hold in the discrete classical case, namely when-
ever L is a standard generator which appears conservative on the pure states
in its domain, but actually allows some escape to infinity and hence generates
a non-conservative semigroup. Indeed, any standard generator is completely
determined by its action on the pure states (even though its full domain
might not be spanned just by these). If L were standard, since it coincides
with £ on the pure states, we would have L = £. On the other hand, these
generators are clearly different, since one generates a conservative semigroup
and the other does not.

In the quantum case this argument is too simple, since not all pure states
are in the domain, but only those |1)(1)| with ¢ € dom K. So the possibility
we have to discuss is that there might be another contraction generator K )
and associated no-event semigroup generator £°, from which £ arises in a
one-step minimal solution construction.

It is here that we can use the fact (Props. 5 and 3) that for all |p)¢| €

dom £ we actually have ¢, € dom K. So even if we had started from some
other K, we could still reconstruct dom K from dom £ = dom £. Since L
and £ coincide on (dom K)X they would arise as minimal solutions from the

same equation on (dom K )><. Therefore, in both examples L is non-standard.
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5. Conclusions and Outlook

We have explicitly defined a notion of unbounded GKLS generators, which
we feel summarizes an agreement in the literature [1,21,2,5,16]. However,
as we have shown, not all generators are of this form.

As the defining feature of the standard form we took the existence of many
pure states in the domain. Alternatively, one can start from the observation
that 7; — T, is completely positive for all t. Bill Arveson [7,19] calls no-event
semigroups 7, with this property the units of 7;. His “standard” case, which
he calls “type I”, is defined by the existence of many such units, which arise
by Lemma 2 from each other. He gives examples, which are not of this kind,
especially one with no units at all [7,22] (“type III”). It is unclear how our
notion of standardness and Arveson’s type I are exactly related, and this
seems like an excellent question for further research.

Of course, the long-term goal is to arrive at a better understanding of
non-standard generators, for which a closer look at the classical theory will
certainly be helpful.
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