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Abstract. This special volume celebrates the 40th anniversary of the discovery of the
Gorini-Kossakowski-Sudarshan-Lindblad master equation, which is widely used in quantum
physics and quantum chemistry. The present contribution aims to celebrate a related dis-
covery — also by Sudarshan — that of Quantum Maps (which had their 55th anniversary
in the same year). Nowadays, much like the master equation, quantum maps are ubiquitous
in physics and chemistry. Their importance in quantum information and related fields can-
not be overstated. Here, we motivate quantum maps from a tomographic perspective, and
derive their well-known representations. We then dive into the murky world beyond these
maps, where recent research has yielded their generalisation to non-Markovian quantum
processes.

Keywords: Open quantum systems; quantum maps; non-Markovianity; operational quan-
tum mechanics; quantum tomography.

1. Introduction

Describing changes in a system state is the principal goal of any mathemat-
ical theory of dynamics. In order to be physically relevant, this description
must be faithful to what is observed in experiments. For quantum systems,
a dynamical theory must quantify how measurement statistics of different
observables can change from one moment to the next, even when the system
in question may be interacting with its wider environment, which is typically
large, uncontrollable and experimentally inaccessible.

While unitary evolution of vectors in Hilbert space (according to Schrödin-
ger’s equation) is sufficient to describe the behaviour of a deterministically
prepared closed quantum system, more is required when the system is open
to its environment, or when there is classical uncertainty in its preparation.
The complete statistical state of such a system (or, more properly, an en-
semble of identical and independent preparations of the system) is encoded
in its density operator ρ, which can be determined operationally in a quan-
tum state tomography experiment. Namely, by combining the measurement
statistics of a set of linearly independent observables. A reader who is unfa-
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miliar with the concept of density operators or quantum state tomography
can find more information in [65].

In this paper, we concern ourselves with the dynamical description of open
quantum systems, primarily in terms of mappings from density operators at
one time or place to another, i.e., the quantum generalisation of classical
stochastic maps. These mappings are superoperators — operators on an
operator space — and depending on context, are referred to as quantum
maps, quantum channels, quantum operations, dynamical maps, and so on.
In this paper, we stick with the term quantum maps throughout.

Quantum maps are ubiquitous in the quantum sciences, particularly in
quantum information theory. They are natural for describing quantum com-
munication channels [97], crucial for quantum error correction [49], and form
the basis for generalised quantum measurements [72]. Yet their origins, mo-
tivation and applicability are not always transparent. Their discovery dates
back to 1961, in the work of George Sudarshan and collaborators [91, 92]. A
decade later, Karl Kraus also discovered them [45], and quantum maps are
perhaps most widely known through his 1984 book [46].

Along the way, there have been many other players. For example, the
works of Stinespring [90] and Choi [21, 22] are crucial for understanding the
structure of quantum maps. Stinespring’s result predates that of Sudarshan,
though both his and Choi’s works are purely mathematical in nature and not
concerned with quantum physics per se. On the physics side, the works of
Davies and Lewis [32], Jamiolkowski [43], Lindblad [50], and Accardi et al. [2],
to name but a few,a have led to a deep understanding of quantum stochastic
processes. Here, we put history aside, and describe quantum maps and their
generalisations in a pedagogical manner. We present an operationally rooted
and thorough introduction to the theory of open quantum dynamics.

The article has two main sections. In Sect. 2, we introduce quantum
maps in the context of quantum process tomography — that is, what can be
inferred about the evolution of the density operator in experiment — before
exploring how they can be represented mathematically. Along the way, we
take care to point out the relationships between different representations,
and the physical motivation behind mathematical properties such as linearity
and complete positivity. In Sect. 3, we discuss open quantum dynamics in
situations where the formalism developed in the first section is insufficient to
successfully describe experimental observations. Namely, when the system
is initially correlated with its environment and when joint statistics across
multiple time steps is important. After demonstrating how a näıve extension
of the conventional theory fails to deliver useful conclusions, we outline a
more general, operational framework, where evolution is described in terms
of mappings from preparations to measurement outcomes.

aA complete list of important contributions would constitute an entire paper in itself,
and we apologise to any who feel they have been unjustly omitted.

1740016-2

O
pe

n 
Sy

st
. I

nf
. D

yn
. 2

01
7.

24
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 N

IC
O

L
A

U
S 

C
O

PE
R

N
IC

U
S 

U
N

IV
E

R
SI

T
Y

 o
n 

01
/1

1/
18

. F
or

 p
er

so
na

l u
se

 o
nl

y.



An Introduction to Operational Quantum Dynamics

2. Quantum Maps and Their Representations

A quantum map E is a mapping from density operators to density operators:
ρ 7→ ρ′ = E [ρ]. Here ρ and ρ′ are operators on the ‘input’ and ‘output’
Hilbert spaces of the map, respectively.b Formally, this can be written as E :
B(Hdin)→ B(Hdout), i.e., as a mapping from bounded operators on the input
Hilbert space to bounded operators on the output Hilbert space. In fact, the
map can be seen as a bounded operator on the space of bounded operators,
E ∈ B(B(Hdin)). Here d = dim(Hd) denotes the dimension of Hilbert space
Hd. Throughout this paper, we work in the Schrödinger picture with finite
dimensional quantum systems (see [47] for a description of quantum maps
in the Heisenberg picture). In general, the input and output Hilbert space
need not be the same, but for simplicity we will, for the most part, assume
Hdin

∼= Hdout and omit the subscripts “in” and “out” from this point on.
To represent a deterministic physical process, the quantum map has to

preserve the basic properties of the density operator, i.e., it has to preserve
trace, hermiticity, and positivity (as we detail more explicitly at the end of
this section). Moreover, the action of the quantum map must be linear:

E
[∑

pkρk

]
=
∑

pkE [ρk] =
∑

pkρ
′
k . (1)

It is worth noting that this requirement does not follow from the fact that
quantum mechanics is a linear theory, in the sense of quantum state vectors
formed from linear superpositions of a basis set (in fact, E is not generally
linear in this sense). Instead, the linearity of the quantum map is analogous
to the linearity of mixing in a statistical theory.

To better appreciate this, consider a quantum channel from Alice to Bob,
where Alice prepares a system in either state ρ1 or ρ2; she then sends the
system to Bob. Upon receiving the system Bob performs state tomography on
the state Alice sent by measuring it. They do this many times. Suppose Alice
sends ρ1 on day-one and ρ2 on day-two. From the measurement outcomes
Bob will conclude that the received states are ρ′1 = E [ρ1] on day-one and
ρ′2 = E [ρ2] on day-two. Now, suppose Alice sends the two states randomly
with probabilities p and 1− p respectively. Without knowing which state is
being sent on which run, Bob would conclude that he receives state ρ̄′ = E [ρ̄],
where ρ̄ = pρ1 + (1 − p)ρ2. That is, we can interpret Alice’s preparation to
be the average state. Now suppose that, at some later point, Alice reveals
which state was sent in which run; Bob can now go back to his logbook and
conclude that he received the state ρ′1 (ρ′2) whenever Alice sent him ρ1 (ρ2).
Conversely, averaging over that data would amount to Bob receiving ρ̄′. Thus
we must have ρ̄′ = pρ′1 + (1−p)ρ′2. This simple thought experiment demands

bStrictly speaking, the mapping is between a preparation that yields ρ, and a measure-
ment that interrogates ρ′.
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that the action of quantum channels must be linear. However, note that,
while we have used the language of quantum mechanics in this paragraph,
there is nothing quantum about this experiment.c Linearity of mixing is a
general concept that applies to all stochastic theories.

Now, using the fact that the quantum map E is linear, we will derive
several useful representations for it.

2.1. Structure of linear maps

Any linear map M on a (complex) vector space V is unambiguously defined

by its action on a (not necessarily orthogonal) basis {r̂i}dVi=1 of V , where dV
is the dimension of V .d That is to say, the input-output relation M [r̂i] = r̂′i
entirely defines M . For any basis {r̂i} of V , there exists a dual set {d̂i}dVi=1 ⊂
V such that (d̂i, r̂j) = δij , where ( · , · ) is the scalar product in V . With this,
for any v ∈ V , the action of M can be written as

M [v] =

dV∑

i=1

r̂′i (d̂i,v) . (2)

This equation is correct by construction, as it maps every basis element r̂i to
the correct output r̂′i. In other words, it says that knowing the images under
a map M : V → V for a basis of V completely defines the action of the map.

Equation (2) can be rewritten as

M [v] =

dV∑

i=1

r̂′i (d̂i,v) ≡
dV∑

i=1

(
r̂′i × d̂

∗
i

)
[v] , (3)

where we have defined the outer product

(
r̂′i × d̂

∗
i

)
kl

= (r̂′i)k(d̂i)
∗
l . (4)

For an orthonormal basis {êi} of V , we have (a)i = (a, êi), and Nij =
(êi, N [êj ]) for any a ∈ V and any linear operator N on V . Consequently, we
obtain a matrix representation M of the map M

(M )kl =

dV∑

i=1

(
r̂′i × d̂

∗
i

)
kl

(5)

cThe same argument would hold for a nonlinear map on the space of pure states. How-
ever, care has to be taken in differentiating between proper and improper mixtures [34].

dHere, and throughout this paper, the caret is used to indicate that the object is an
element of some fixed (not necessarily normalised) basis set used for tomography.
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An Introduction to Operational Quantum Dynamics

E
Hdin

Hdout

ρ
′ρ

(a)

U

ρ

τe

ρ
′

Hde
Hd

e
′

Hdin
Hdout

(b)

Fig. 1: (a) Action of a linear map E : B(Hdin)→ B(Hdout). The action of the
map E on a random ρ is entirely defined by its input-output relation {ρ̂i} →
{ρ̂′i}. (b) Stinespring dilation. Any completely positive trace preserving map
can be represented (non-uniquely) as the contraction of a unitary dynamics
U in a larger space, i.e. E [ρ] = tre (U [ρ⊗ τe]), where U [X] = UX U † and U
is a unitary matrix (see Sect. 2.5.3).

and the action of M can be written in terms of the matrix M :

(M [v])k =
∑

l

(M )kl vl =

dV∑

i=1

(
r̂′i × d̂

∗
i

)
kl
vl , (6)

where v =
∑

m vmêm. Note that there is a distinction between M and M ;
the former is a map, while the latter is its representation as a matrix. This
distinction is often not made when dealing with quantum maps, but here we
will make it explicit.

2.1.1. Tomographic representation

A quantum map E is a linear map on the vector space B(Hd). Since B(Hd)
is isomorphic to the vector space of d× d matrices (where d is the dimension
of Hd), we can make use of the natural inner product on the latter space, the
Hilbert-Schmidt inner product (ρ, η) = tr(ρ† η), to define an inner product
on the space of density operators. Consequently, we can express the action
of E in a way equivalent to (2); different generalisations of the outer product
defined in (3) will then lead to different representations of E (see Sect. 2.2).

To proceed, we need a basis set of the input space. There always exists a
set of operators that constitutes a (generally non-orthogonal) basis of B(Hd).
For example, the set of elementary matrices forms such a basis, as do Pauli
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and Gell-Mann matrices. Both of these sets are orthonormal with respect
to Hilbert-Schmidt inner product, but neither of them consists of physical
density operators. However, as explained above, the map E is unambiguously
defined by its input-output relation E [ρ̂i] = ρ̂′i. Thus, we can use density

operators for the basis set: {ρ̂i}d
2

i=1 ⊂ B(Hd). For example, for a two-level
quantum system we can use the following density operators

ρ̂1 =
1

2

[
1 1
1 1

]
, ρ̂2 =

1

2

[
1 −i
i 1

]
, ρ̂3 =

[
1 0
0 0

]
, ρ̂4 =

1

2

[
1 −1
−1 1

]
.

(7)
These matrices are linearly independent and form a basis, but clearly, they
are not orthonormal. However, for any choice of basis, there exists a set of

dual matrices {D̂i}d
2

i=1 [61] such that tr(D̂†i ρ̂j) = δij (see Appendix A for
proof). Consequently, in analogy to (2), the action of E on ρ can be written
as

E [ρ] =

d2∑

i=1

ρ̂′i tr(D̂†iρ) , (8)

which means that determining the output states for a basis of input states
entirely defines the action of the map E .

The dual matrices for the states in (7) are

D̂1 =
1

2

[
0 1 + i

1− i 2

]
, D̂2 =

[
0 −i
i 0

]
,

D̂3 =

[
1 0
0 −1

]
, D̂4 =

1

2

[
0 −1 + i

−1− i 2

]
. (9)

Clearly these dual matrices are not positive. In fact, if both the outputs ρ̂′i
and the duals are positive, then E is necessarily an entanglement breaking
channel [41, 40] (the converse also holds). In general, neither set of matrices

in (8), {ρ̂′i} and {D̂i}, have to be positive, and it can sometimes even be

advantageous to choose non-positive matrices ρ̂′i and D̂i for the representation
of E .

However, for a proper quantum map, we can choose {ρ̂′i} to be states,

and {D̂i} to be the dual set corresponding to a set of basis states {ρ̂i}.
(see, e.g. [77, 99] for a more in-depth introduction to quantum tomography).
Then (8) captures precisely the idea of quantum process tomography [26, 76],
where the dynamics of a quantum system is experimentally reconstructed by
relating a basis of input states to their corresponding outputs. The action
of the map E on any state ρ is then simply determined from the linearity
of the map. From here on, we will — for obvious reasons — refer to this
representation as the input/output or tomographic representation of E .
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An Introduction to Operational Quantum Dynamics

2.1.2. Operator-sum representation

Based on (8), the action of E can be rewritten in a form that is used more

widely in the literature. Both ρ̂′i and D̂i can be expressed in terms of their
left- and right-singular vectors, i.e.,

ρ̂′i =
∑

β

|siβ〉〈tiβ | and D̂i =
∑

µ

|uiµ〉〈viµ| , (10)

where {|siβ〉}, {|tiβ〉} and {|uiµ〉}, {|viµ〉} are the respective unnormalised left-

and right-singular vectors of ρ̂′i and D̂i. With this decomposition, the action
of E reads

E [ρ] =
∑

i

ρ̂′i tr(D̂†i ρ) =
∑

i

∑

β,µ

|siβ〉〈tiβ | tr
(
|viµ〉〈uiµ| ρ

)

=
∑

β,µ

∑

i

(
|siβ〉〈uiµ|

)
ρ
(
|viµ〉〈tiβ|

)
.

Compressing the indices {i, β, µ} into one common index yields the operator
sum representation of E :

E [ρ] =
∑

β,µ

∑

i

(
|siβ〉〈uiµ|

)
ρ
(
|viµ〉〈tiβ|

)
≡
∑

α

LαρR
†
α , (11)

where Lα and Rα have the same shape, but are not necessarily square (if the
input and output spaces are not of the same size). In exactly the same vein,
the tomographic representation of a map can be recovered from its operator
sum representation via a singular value decomposition.

2.1.3. Unitary freedom

We have shown that any linear map can be expressed in the operator sum
representation, but the set of matrices {Lα, Rα} in (11) is not unique. Any
set {L′µ, R′µ} of matrices that is connected to {Lα, Rα} by an isometry, i.e.,

L′µ =
∑

α(U)µαLα and R′µ =
∑

α′(U)µα′Rα′ , where U †U = 1l, gives rise to
the same linear map:

∑

µ

L′µρR
′ †
µ =

∑

αα′

∑

µ

(U)µαLαρR
†
α′(U)∗µα′ =

∑

αα′

(U †U)α′αLα′ρR†α′

=
∑

α

LαρR
†
α .

Both of the representations we have presented so far consist of sets of
operator pairs {ρ̂′i, D̂′i} for the tomographic representation and {Lα, Rα} for
the operator sum representation. These will be explored further later in this
section. Next, however, we will present two matrix representations for the
map.
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2.2. Matrix representations

Since B(Hd) is itself a vector space, it should be possible to represent E —
a linear map on that space — as a matrix. Indeed, two such representations
were first discovered back in 1961 [91]. To derive these representations, we
note that there are (at least) two different ways to generalise the outer prod-
uct (4), and hence two different ways to obtain representations of E in terms
of outputs and dual matrices.

2.2.1. Sudarshan’s A form

In clear analogy to (5), one possible matrix representation of E (in an or-
thonormal basis of Hd ⊗Hd) is given by

EA =
d2∑

i=1

ρ̂′i × D̂∗i , with
(
ρ̂′i × D̂∗i

)
rs;r′s′

= (ρ̂′i)rs(D̂i)
∗
r′s′ . (12)

In Dirac notation, this means that we have generalised the outer product
defined in (4) as

|r〉〈s| × |r′〉〈s′| ≡ |rs〉〈r′s′| . (13)

The action of E can be simply written as

(E [ρ])rs =

d∑

r′s′

(EA)rs;r′s′(ρ)r′s′ . (14)

This is what Sudarshan et al. called the A form of the dynamical map [91].
They observed that the matrix EA is not Hermitian even if E is hermiticity
preserving. Indeed, this matrix is — quite naturally — not even square if
the input dimensions are different from the output dimensions.

Mathematically, the outer product ‘flips’ the bra (ket) 〈s| (|r′〉) into the
ket (bra) |s〉 (〈r′|). By vectorising ρ and E [ρ], we can write (14) in a more
compact way:

|E [ρ]〉〉 = EA |ρ〉〉 , where |ρ〉〉 =
∑

rs

(ρ)rs |rs〉 for ρ =
∑

rs

(ρ)rs |r〉〈s| .

(15)
For the details of vectorisation of matrices see, e.g. [28, 36]. Because the
action of EA onto |ρ〉〉 is simply a multiplication of a vector by a matrix, this
representation is often favourable for numerical studies.

2.2.2. Sudarshan’s B form

Next, we consider what Sudarshan et al. called the B form of the dynamical
map [91]. Instead of the outer product in (12), let us consider a tensor
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An Introduction to Operational Quantum Dynamics

EA =

















e00;00 e00;01 e00;10 e00;11

e01;00 e01;01 e01;10 e01;11

e10;00 e10;01 e10;10 e10;11

e11;00 e11;01 e11;10 e11;11

















⇐⇒ EB =

















e00;00 e00;01 e01;00 e01;01

e00;10 e00;11 e01;10 e01;11

e10;00 e10;01 e11;00 e11;01

e10;10 e10;11 e11;10 e11;11

















Fig. 2: (Colour online) Converting between A and B forms. In a given or-
thonormal basis, the A and B forms of a map E are related by a simple
reshuffling of the matrix elements. For a better orientation, the matrix ele-
ments that change position are depicted in colour.

product:

EB =

d2∑

i=1

ρ̂′i ⊗ D̂∗i , with
(
ρ̂′i ⊗ D̂∗i

)
rr′;ss′

= (ρ̂′i)rs(D̂i)
∗
s′r′ ; (16)

that is, the product in (4) is generalised to |r〉〈s| ⊗ |r′〉〈s′| = |rr′〉〈ss′|. The
action of E can be written as

(E [ρ])rs =

d∑

r′s′

(EB)rr′;ss′(ρ)r′s′ . (17)

While the A form is closer in spirit to the general considerations about
linear maps on vector spaces, the B form possesses nicer mathematical prop-
erties (see below), and from the point of view of quantum mechanics, the
tensor product ⊗ seems ‘more natural’ than the outer product ×. Com-
paring the matrices EA and EB, it can be seen, from the relation between
the outer product and the tensor product, that they coincide up to reshuf-
fling [91, 102, 8].

In Fig. 2, we show how to go between the two forms for a map acting on
a two-level system (qubit). Unlike EA, the matrix EB is Hermitian iff EB is
hermiticity preserving. A quantum map is trace preserving iff trout(EB) = 1lin,
where trout denotes the trace over the output Hilbert space of the map E (i.e.,
the trace over the unprimed indices in (17)) and 1lin is the identity matrix on
the input space. We will prove these properties in the following subsections.

2.3. Choi-Jamio lkowski isomorphism

Consider the action of a quantum map on one part of an (unnormalised)

maximally entangled state |I〉 =
∑din

k=1 |kk〉:

ΥE = E ⊗ I [|I〉〈I |] =

din∑

k,l=1

E [|k〉〈l|]⊗ |k〉〈l| , (18)
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S. Milz, F. A. Pollock, and K. Modi

where {|k〉} is an orthonormal basis of Hdin and I is the identity operator on
B(Hd). The resultant matrix ΥE can be shown to be, element-by-element,
identical to the quantum map E . In principle, any vector |I〉 with full Schmidt
rank could be used for this isomorphism [30]. In the form of (18) it is known as
the Choi-Jamio lkowski isomorphism (CJI) [43, 22], an isomorphism between
linear maps, E : B(Hdin)→ B(Hdout), and matrices ΥE ∈ B(Hdout)⊗B(Hdin).
In order to keep better track of the input and output spaces of the map E , we
explicitly distinguish between the spaces Hdin and Hdout in this subsection.

Usually, ΥE is called the Choi matrix or Choi state of the map E (we will
refer to it as the latter when it is a valid quantum state, up to normalisation).e

Given ΥE , the action of E can be written as

E [ρ] = trin
[(

1lout ⊗ ρT
)

ΥE
]
, (19)

where 1lout is the identity matrix on Hdout and trin denotes the partial trace
over the input Hilbert space Hdin. Equation (19) can be shown by insertion:

trin
[(

1lout ⊗ ρT
)

ΥE
]

=

din∑

k,l

trin
[(

1lout ⊗ ρT
)

(E [|k〉〈l|]⊗ |k〉〈l|)
]

=

din∑

k,l,m

E [|k〉〈l|]〈m| ρT |k〉〈l|m〉 =

din∑

k,l

ρklE [|k〉〈l|]

= E [ρ] .

The CJI is by no means restricted to quantum maps; any linear map E can
be mapped to a Choi matrix ΥE via the CJI. For instance, one can imprint a
classical stochastic process onto a state by inputting one part of a maximally
classically correlated state into the process. For quantum maps, however,
the Choi matrix has particularly nice properties. Complete positivity of E is
equivalent to ΥE ≥ 0 (see Sect. 2.4 for a proof), and it is straightforward to
deduce from (19) that E is trace preserving iff trout(ΥE) = 1lin (see Sect. 2.5).

Besides these appealing mathematical properties, the CJI is also of exper-
imental importance. Given that a (normalised) maximally entangled state
can in principle be created in practice, the CJI enables another way of recon-
structing the map E , by letting it act on one half of a maximally entangled
state and tomographically determining the resulting state. While this so-
called ancilla-assisted process tomography [5, 29] requires the same number
of measurements as the input-output procedure, it can be, depending on the
experimental situation, easier to implement in the laboratory.

The mathematical properties of ΥE are reminiscent of the properties of
the B form. However, at first sight, it is not clear how the Choi matrix

eBy means of the CJI, the density matrix ρ itself can also be considered the Choi state
of a map E : C → B(H) [20].
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An Introduction to Operational Quantum Dynamics

ΥE is related to the different matrix representations of E in terms of the
dual matrices and outputs presented in Sect. 2.1. The relation can be made

manifest by using the fact that the set {ρ̂i}d
2
in

i=1 forms a basis of B(Hdin). With
this, we can write

|k〉〈l| =

d2in∑

i=1

α
(kl)
i ρ̂i ,

where α
(kl)
i ∈ C is given by α

(kl)
i = tr(D̂†i |k〉 〈l|). Consequently, we obtain

ΥE =
∑

k,l

E [|k〉〈l|]⊗ |k〉〈l| =
∑

k,l,i

α
(kl)
i E [ρ̂i]⊗ |k〉〈l| (20)

=
∑

i

E [ρ̂i]⊗
∑

k,l

tr
(
D̂†i |k〉〈l|

)
|k〉〈l| =

∑

i

E [ρ̂i]⊗ D̂∗i , (21)

where, in the last step, we have used the fact that {|k〉〈l|}dini,j=1 also forms a

basis of B(Hdin). By comparison with (16), we see that the Choi matrix of
E is exactly equal to the B form of E , i.e., ΥE = EB, and henceforth, we will
use the terms Choi matrix and B form interchangeably.

2.4. Operator sum representation revisited

As mentioned in Sect. 2.1, any linear map can be written in terms of an
operator sum representation. We proved this statement using the input-
output action of the linear map, given in (2). We now provide an alternative
proof employing ΥE . The Choi matrix ΥE can be written in terms of its
unnormalised left- and right-singular vectors, i.e. ΥE =

∑D
α=1 |wξ〉〈yξ|, where

D = doutdin. We have

E [ρ] =
D∑

α=1

trin
[(

1lout ⊗ ρT
)
|wα〉〈yα|

]
=

D∑

α=1

din∑

k,l=1

〈l|wα〉〈k| ρT |l〉〈yα|k〉

=
D∑

α=1

( din∑

l

〈l|wα〉〈l|
)
ρ
( din∑

k=1

|k〉〈yα|k〉
)
≡

D∑

α=1

LαρR
†
α ,

which is the operator sum representation of E already encountered in Sect. 2.1.
Given the operator sum representation of a linear map E , it is possible to

find another way of writing its A and B forms. The B form EB is obtained
via

EB = ΥE =
∑

α

din∑

i,j=1

Lα |i〉〈j|R†α ⊗ |i〉〈j| =
∑

α

Lα ×R∗α . (22)
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S. Milz, F. A. Pollock, and K. Modi

Correspondingly, the A form of E can be written as [93]

EA =
∑

α

Lα ⊗R∗α . (23)

Indeed, substituting (23) into (14), we obtain

(E [ρ])rs =
∑

r′s′

(EA)rs;r′s′ρr′s′ =
∑

α

∑

r′s′

(Lα)rr′ρr′s′(R
∗
α)ss′

=
(∑

α

LαρR
†
α

)
rs
.

The operators {Lα, Rα} are operationally different from {ρ̂′i, D̂i} in (16). A
quantum map in the form EA (EB) is obtained by tensor (outer) product
of the former, and outer (tensor) product of the latter. Therefore, in clear
analogy to the corresponding statement for the B form and the operator
sum representation, we can recover the tomographic representation of E via
a singular value decomposition of EA.

2.5. Properties of quantum maps

The four representations derived above (input-output, operator sum, A form
and B form) are valid for any linear map on a finite-dimensional complex
operator space. However, not every such map represents the dynamics of
a physical system. In order to do so, it must ensure that the statistical
character of quantum states is preserved. Here, we lay out the mathematical
constraints imposed on quantum maps by this requirement, and explore the
corresponding implications for different representations.

2.5.1. Trace preservation

Since the trace of the density operator represents its normalisation, a de-
terministic quantum map should be trace preserving (more general, trace
non-increasing maps do not have this property, and represent probabilistic
quantum processes). This requirement can be stated as

tr(ρ′) = tr (E [ρ]) =
∑

i

tr[ρ̂′i] tr[D̂†i ρ] ∀ ρ . (24)

Since tr[D̂†i ρ̂i] = 1, by linearity, the trace-preservation condition holds iff
tr(ρ̂′i) = tr(ρ̂i). That is, the map E is trace preserving iff it is trace pre-
serving on a basis of inputs. Equivalently, a map E is trace preserving iff∑

i(tr ρ̂
′
i)D̂
∗
i = 1l.
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An Introduction to Operational Quantum Dynamics

Trace preservation can also be stated in a succinct way in terms of the
operator sum representation. We have

tr (E [ρ]) = tr
(∑

α

LαρR
†
α

)
= tr

(∑

α

R†αLαρ
)
, (25)

and hence E is trace preserving for all ρ iff
∑

αR
†
αLα = 1l.

In a similar way, we can express trace preservation of E in terms of the B
form. If E is trace preserving, we have tr(E [ρ]) = tr(ρ) for all ρ. In terms of
EB , this means

tr(E [ρ]) = tr
[(

1lout ⊗ ρT
)
EB
]

= tr
[
ρTtrout(EB)

]
= tr(ρ) , (26)

which is true iff trout(EB) = 1l.

2.5.2. Hermiticity preservation

Given a valid quantum state as input, a physical quantum map should pro-
duce a valid quantum state as output; hence, it should preserve the hermitic-
ity of the density operator. A map with this property satisfies E [ρ] = (E [ρ])†

for all ρ = ρ†. In terms of output matrices and duals, this condition reads

(ρ′)† =
∑

i

(ρ̂′i)
† tr(D̂iρ) =

∑

i

ρ̂′i tr(D̂†i ρ) = ρ′ ∀ ρ = ρ† . (27)

If E is hermiticity preserving, then its B form (Choi matrix) EB is Hermi-
tian. This follows from the fact that hermiticity preservation of E implies
hermiticity preservation of E ⊗ Ia, where Ia is the identity map on an arbi-
trary ancilla. Consequently, the decomposition of EB in terms of its left- and
right-singular vectors becomes an eigendecomposition, i.e.,

EB =

D∑

α=1

λα |α〉〈α| ,

where all the eigenvalues λα ∈ R and we have 〈α|α′〉 = δαα′ . Hence, the
action of E can be written as

E [ρ] =

D∑

α=1

tr
in

[(
1lout ⊗ ρT

)
λα |α〉〈α|

]

=
D∑

α=1

λα

( din∑

l=1

〈l|α〉〈l|
)
ρ
( din∑

k=1

|k〉〈α|k〉
)
≡

D∑

α=1

λα K̃αρK̃
†
α , (28)

which implies that the matrices {Lα, Rα} of the map’s operator sum rep-
resentation satisfy Lα = ±Rα for all α. In fact, the ability to write the
map’s action in the form of (28) is a necessary and sufficient condition for
hermiticity preservation [94, 44], as is the hermiticity of its B form EB.
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S. Milz, F. A. Pollock, and K. Modi

2.5.3. Complete positivity

In addition to being hermiticity and trace preserving, a physical quantum
map E must be positive, i.e., it must map positive matrices ρ to positive
matrices ρ′. What is more, it must be completely positive (CP): any trivial
extension E ⊗ Ia : B(Hd) ⊗ B(Hna) → B(Hd) ⊗ B(Hna), where Hna is n-
dimensional and Ia is the identity map on B(Hna), must also be positive. In
other words, a meaningful operation E that acts non-trivially only on a subset
of the degrees of freedom of a quantum state should not yield a non-physical
result: (E ⊗ Ia)[η] ≥ 0 for any η ≥ 0 and any n ≥ 1.

The above justification for CP is an operational one. However, CP also
guarantees that the action of the (trace preserving) map comes from a joint
unitary dynamics of the system with an environment, as proven by Stine-
spring in 1955 [90] (see Fig. 1). This result was recently generalised for trace
non-increasing CP maps [19], which can, in principle, be physically realised
within quantum mechanics as joint unitary dynamics with postselection.

If the map E is CP, than its B form EB = E ⊗ I [|I〉〈I|] is non-negative
by definition,f and hence all its eigenvalues satisfy λα ≥ 0. This allows (28)
to be further simplified:

E [ρ] =
D∑

α=1

( din∑

l=1

√
λα 〈l|α〉〈l|

)
ρ
(√

λα

din∑

k=1

|k〉〈α|k〉
)
≡

D∑

α=1

KαρK
†
α . (29)

This form of the map was first noticed by Sudarshan et al. [91] in 1961 by
means of eigendecomposition of EB . However, it is now commonly referred
to as the Kraus form [65] and the dout × din matrices {Kα} are called the
Kraus operators of E [45, 46]. CP therefore implies that Lα = Rα, ∀α in the
general operator sum representation of E .

Properties of the Kraus form

As in the case of general linear maps, the set of Kraus operators that cor-
responds to E is not unique. Any set {K ′µ} of dout × din matrices that is
related to {Kα} by an isometry gives rise to the same map, i.e., {K ′µ =∑

α′(U)µα′Kα′}, where U †U = 1l, is also a valid set of Kraus operators for
E . The minimal number of operators needed for the operator sum represen-
tation of a CP map E is called its Kraus rank. It coincides with the rank of
the Choi state ΥE [94].

Every CP map allows for a canonical Kraus decomposition, where the
number of Kraus operators is minimal and they are mutually orthogonal,

i.e., tr(KαK
†
α′) ∝ δαα′ . In fact, the Kraus decomposition derived in (29) is

fIt is clear from this that CP also implies hermiticity preservation.
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An Introduction to Operational Quantum Dynamics
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Fig. 3: Converting between different representations. Even though we have
not drawn the corresponding arrows explicitly, it is, e.g., possible to get from
the A form to the operator sum representation by reshuffling followed by a
singular value decomposition (SVD) (analogously for B form to input/output
representation).

already canonical:

tr(KαK
†
α′) =

∑

k,l

√
λαλα′ tr(〈l|α〉〈l|k〉〈α′|k〉) = λαδαα′ . (30)

So far, we have shown that the action of a CP map can be expressed in terms
of a Kraus decomposition. The inverse of this statement is also true. If the

action of a map E can be written as E [ρ] =
∑

αKαρK
†
α, then

(E ⊗ Ia) [η] =
∑

α

(Kα ⊗ 1l)η(K†α ⊗ 1l) =
∑

α

[(Kα ⊗ 1l)
√
η ][
√
η (K†α ⊗ 1l)] ,

(31)
where

√
η exists and is positive due to the positivity of η. The last term

in (31) is of the form
∑

αAαA
†
α which is positive, as every term AαA

†
α is

positive on its own. As this is true independent of the size of η, we have
shown that E ⊗ Ia is positive if the action of E can be written in terms of a
Kraus decomposition. This means that a map E is CP iff its action can be
written in terms of a Kraus decomposition. Equivalently, E is CP iff EB is
positive, which implies that a map for which E⊗Ia ≥ 0, for all dim(Hna) ≤ d
satisfies E ⊗ Ia ≥ 0, for any dimension of dim(Hna).
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2.6. Representations of quantum maps — a summary

All the representations introduced above constitute different concrete ways of
expressing the action of the same abstract map E . This situation is reminis-
cent of differential geometry, where (abstract) geometrical objects can be ex-
pressed in terms of different coordinate systems. And, just like in differential
geometry, where “in practice few things are more useful than a well-chosen
coordinate system” [8], which representation of E is most advantageous de-
pends on the respective experimental or computational context.

While the A form does not possess particularly nice mathematical prop-
erties, even for the case of quantum maps, the fact that its action can be
written in terms of a simple matrix multiplication, makes it appealing for
numerical simulations (where differential equations must often be expressed
in vector form). On the other hand, the properties of the B form make it
easy to check whether or not a map corresponds to a physical process. It
also embodies the CJI between quantum maps and quantum states, which
can be used for the ancilla-assisted tomography of quantum maps.

The tomographic representation of E is closest in spirit to the experi-
mental reconstruction of the action of E . Given the experimentally obtained
input/output relation between a basis of inputs and their corresponding out-
puts, it allows one to directly infer the action of E on an arbitrary input
state.

Lastly, the operator sum representation is particularly advantageous from
a theoretical point of view. Proving that the dynamics of an open system for
a particular initial state is CP amounts to showing that it can be written in
terms of a Kraus decomposition [46, 4, 82, 74], and the existence of a minimal
Kraus decomposition can be employed to show the existence of generalised
Stinespring dilations [19, 20].

The above list of applications of different representations is by no means
exhaustive, but it gives a flavour of when they are each most useful. We have
summarised the different representations and their properties in Table 1,
while Fig. 3 depicts how to convert from one representation to another.

We end this section by mentioning that all the above results can also be
depicted and derived in a graphical way by means of tensor network calculus.
This powerful graphical framework allows to — amongst others — represent
quantum maps and their different representations [71, 85, 9, 100] and can also
be used for the description of higher level quantum maps that we will discuss
in Sect. 3 [99].

3. Generalisations of Quantum Maps

The quantum maps described in the previous section take the initial state ρ of
the system at a particular point in time t0 to that at a particular later time t.
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An Introduction to Operational Quantum Dynamics

Kraus
(Operator Sum)

Input/Output
(Tomographic)

Sudarshan B form
(Choi Matrix) Sudarshan A Form

Rep. {Lα, Rα} {ρ̂′i, D̂i} EB =





∑
i ρ̂

′
i ⊗ D̂∗

i

∑
α Lα × R∗

α

EA =





∑
i ρ̂

′
i × D̂∗

i

∑
α Lα ⊗R∗

α

Action ρ′ =
∑

α LαρR
†
α ρ′ =

∑
i ρ̂

′
i tr(D̂

†
i ρ) ρ′ = trin[(1lout ⊗ ρT) EB ] |ρ′〉〉 = EA |ρ〉〉

TP
∑

α R†
αLα = 1l

∑
i tr(ρ̂

′
i)D̂

†
i = 1l trout(EB) = 1lin

HP Lα = ±Rα ∀ α
ρ̂†i = ρ̂i ∀ i

⇒ (ρ̂′i)
† = ρ̂′i ∀ i

E†B = EB

CP Lα = Rα ∀ α
∑

i ρ̂
′
i ⊗ D̂∗

i ≥ 0 EB ≥ 0

Table 1: Linear maps in different representations. Note that the A form does
not possess particularly nice properties for trace preserving (TP), hermiticity
preserving (HP) or completely positive (CP) maps. hermiticity preservation
for the Input/Output representation is denoted only for the case where all
inputs ρ̂i are Hermitian.

Consequently, they allow for the calculation of two-time correlation functions
between observables. Their experimental reconstruction, as introduced in
Sect. 2.2, is well-defined if the relation between input and output states is
linear; this, in turn, means that the system can be prepared independently
of its environment. We will see below that this implies that the system and
environment are in a product state ρ⊗ τe at t0. If the experimental situation
is such that the initial system state is correlated with the environment, or
multi -time correlation functions are of interest, quantum maps from density
operators to density operators are neither well-defined nor sufficient as a
description of the experimental situation.

We first discuss the problem of initial correlations, and various attempts
to solve it. We will then offer an operational resolution, which opens up the
door to describe arbitrary quantum processes.

3.1. Initial correlation problem

In the late 1990s and early 2000s, experimentalists began reconstructing
quantum gates — the fundamental elements of a quantum computer — by
means of quantum process tomography [17, 23, 42, 58, 63, 64, 66, 67, 96]. Ide-
ally a quantum gate is a unitary operation, but in practice they can be noisy.
Therefore, the results of these experimental reconstructions were expected to
be CP quantum maps. Yet, to the surprise of many researchers, the recon-
structed maps were often not CP, and it was not clear why.

This initiated a flurry of theoretical explanations, one of which suggested
that, if the initial state of the system is correlated with its environment, the
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S. Milz, F. A. Pollock, and K. Modi

quantum map describing the dynamics of the system need not be completely
positive [88]. As mentioned above, Stinespring’s theorem [90] guarantees that
any CP dynamics for the system s can be thought of as coming from unitary
dynamics of the system with an environment e. However, this construction
assumes that the initial state of the system-environment (se) state is uncor-
related — a very restrictive assumption in practice. For instance, consider
the case where the initial se state at t0 is uncorrelated, meaning that the
dynamics to some later t1 is CP. In general, at t1 the state of se will be
correlated, and if we want to describe the dynamics from t1 to later t2, the
quantum maps discussed in Sect. 2 no longer apply.

3.1.1. Not completely positive maps, not completely useful

As most clearly elucidated by Pechukas in his seminal paper [69] (and in a
subsequent exchange between him and Alicki [3, 70]), a map whose argument
is the state of s is both completely positive and linear iff there are no initial
se correlations. Pechukas originally proved the theorem for qubits, but it was
later generalised to d-dimensional systems in [44]; here, we give a version of
this result that closely resembles [81].

Pechukas introduced an assignment map A : B(Hds) → B(Hds ⊗ Hde),
which assigns a se operator for every s state, with a consistency condition:
treA[ρ] = ρ for all ρ. Concatenating the assignment map A with a unitary
Use, and tracing over e, gives a map E:

E[ρ] = tre

{
UseA[ρ]U †se

}
≡ tre

{
Useρ

0
seU
†
se

}
. (32)

The unitary Use and trace over e are both CP maps; therefore, if we require
that A is linear and CP, then it follows that E must also have these properties
(and is therefore a legitimate quantum map of the sort discussed in the
previous section).

Now, for a consistent and CP assignment it follows that, for a basis {ρ̂i}
consisting of pure states, A[ρ̂i] = ρ̂i ⊗ τei, where τei have to be density oper-
ators (as required for positivity of the assignment). By the same argument,
the action of the assignment map must also give a product se state on any
pure state. Let us take a pure state not in the basis and linearly express it
as σ =

∑
i ciρ̂i, where ci are real, with

∑
i ci = 1, but not necessarily posi-

tive. The action of the assignment map gives us
∑

i ciρ̂i ⊗ τei =
∑

i ciρ̂i ⊗ τe
and, therefore, τei = τe ∀ i. That is, the initial se state is uncorrelated:
A[ρ] = ρ⊗ τe. Conversely, if the initial se state ρ0se is correlated, then either
complete positivity or linearity must be abandonedg [3, 70].

From an experimental standpoint, this state of affairs is problematic.
On the one hand, complete positivity is a useful property — giving up CP

gAnother option is to give up consistency, but this too is not desirable. We will address
this matter in some detail at the end of this subsection.
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An Introduction to Operational Quantum Dynamics

ρ
0

se

e

s

Fig. 4: A simple circuit, for which the reduced dynamics of s is not describable
by a CP quantum map when ρ0se is initially correlated.

means giving up the Holevo quantity [55], data processing inequality [13], and
entropy production inequality [6] — and a CP description naturally predicts
the physical fact that one always reconstructs positive probabilities (even
for correlated preparations). On the other hand, dropping linearity is not a
viable option either: complete tomography is not possible when the dynamics
is nonlinear — at least not in a finite number of experiments.

Giving up either is undesirable; however, faced with this choice, many re-
searchers have opted to relinquish complete positivity of dynamics in favour
of a framework for open dynamics based on not-completely positive (NCP)
maps [89, 44]. In brief, NCP maps ENCP are linear maps that preserve pos-
itivity for some subset of the space of system density operators, but fail to
do so on the remaining set. They take as their starting point an assignment
map A, as above, but do not require it to produce a positive se operator for
all inputs. Instead, A is required to be consistent, such that A[tre ρ

0
se] = ρ0se

for some correlated ρ0se, and the action of ENCP is only defined on the set
{ρ : A[ρ] ≥ 0} (which always contains tre ρ

0
se), called the compatibility do-

main of the map. Its action can then be defined through the dilation in (32),
which will only result in a positive output when ρ is in the compatibility
domain.

While mathematically well-defined (though not unique), the NCP frame-
work lacks a clear link to the operational reality of quantum dynamics. It
assumes that there is a family of initial system states (the compatibility do-
main) available, and that the experimenter knows exactly which of these
states is the input in each run of the experiment. However, unlike in a classi-
cal stochastic process — where an experimenter can observe initial and final
states of a system without disturbing it — there is no operational mechanism
for identifying which initial state ρ will undergo the evolution in the quan-
tum case. That is, there is no way for the experimentalist to differentiate
between initial states in any given run without disturbing the system, and
hence changing the correlations between s and e. Without such a mechanism,
the concept of a compatibility domain becomes a purely mathematical no-
tion, void of physical meaning. Instead, the experimenter is presented in each
run with a fixed average se state, which they can then prepare by performing
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S. Milz, F. A. Pollock, and K. Modi

a control operation.

In other words, there is no unambiguous way to go into the laboratory and
directly reconstruct a NCP map through process tomography. In fact, if one
were to attempt such a reconstruction, it would quickly become apparent that
the dynamics depends not on the initial state, but on how that state is pre-
pared. To see this more clearly, consider the two-qubit circuit in Fig. 4 with
initially correlated pure state ρ0se = |ψ〉〈ψ|, where |ψ〉 = 1√

2
(µ |00〉 + ν |11〉),

and an se dynamics given by a CNOT gate. An experimenter wishing to
tomographically reconstruct the dynamics of just one of the qubits would
have to prepare a variety of initial system states (we will return to this point
later). Say they intended to prepare the initial state |0〉〈0|. This would
involve making a projective measurement (for sake of argument, in the com-
putational basis {|0〉, |1〉}) followed by a unitary transformation that depends
on the outcome — 1l in the case that the outcome corresponding to projector
Π0 = |0〉〈0| is observed, and σx in the case that the outcome corresponding
to Π1 = |1〉〈1| is observed. However, the state of the environment qubit,
and hence the subsequent dynamics, would also depend on the measurement
outcome:

τe|0 = trs{Π0⊗1l |ψ〉〈ψ|} = |0〉〈0| 6= τe|1 = trs{Π1⊗1l |ψ〉〈ψ|} = |1〉〈1| .

That is, despite the fact that the initial state is the same in these two cases,
the final density operator differs (in fact, the two different output states are
orthogonal). Choosing a different preparation procedure will not alleviate
these issues, and similar problems arise for any initially correlated state. This
leads us to conclude that there is no unique way to prepare a state, and the
preparation procedure plays a role in determining the future evolution [59].

Let us take this argument one step further and attempt to perform quan-
tum process tomography by preparing the basis states with projections. For
simplicity, we will confine the tomography to the x − z plane of the Bloch
sphere. We prepare basis states Π0 and Π1 by projecting the system in the z
basis, and basis state Π+ = |+〉〈+| by projecting in the system in the x basis.
In the latter case, sometimes we will find the system in state Π− = |−〉〈−|,
which is linearly related to the basis states as Π− = Π0 + Π1 − Π+. The
output states corresponding to basis states Π0,Π1,Π+ are easily computed
to be Π0,Π0,Π+. And similarly, by examining the global dynamics we find
that Π− maps to itself. However, if we try to construct a linear map using
the input/output data, we find that it predicts Π− will be mapped to matrix
Π0 +Π0−Π+, which is non-positive. The constructed map is therefore NCP,
and it makes a nonsensical prediction. Clearly, we can prepare Π− and ob-
serve the subsequent output of the process. But the constructed map does
not capture this physics, and we have to conclude that NCP maps are not
useful. Indeed, there are many examples where quantum process tomogra-
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An Introduction to Operational Quantum Dynamics

phy, without properly taking the preparation procedure into account, leads
to NCP and nonlinear mapsh [62].

Before introducing a resolution to the problem of initial correlations, we
discuss the matter of giving up consistency to retain CP and linearity of
the dynamics. Research along these lines led to the claim that “vanishing
quantum discord is necessary and sufficient for completely positive maps” [86]
which received a great deal of attention, but then was subsequently proven
to be incorrect [12], leading to an erratum [87]. In [82], it was shown that
if the initial se state has vanishing quantum discord, then a CP map can be
ascribed to the dynamics of s. Consequently, by projectively measuring the
system part of any initial state ρ0se — which will always produce a discord
zero state — one can associate a CP map from the measurement outcome
at the initial time to the quantum state at the final time. The problem with
this approach is that the CP maps depend on the choice of measurement,
which does not depend on the pre-measurement state of the system. The
corresponding assignment map is therefore not consistent, and one is left
with only a partial description of the dynamics (with similar issues to the
example above).

3.1.2. Operational resolution: superchannels

As already mentioned, the first step of any experiment is to prepare the
system in a desired state by applying a control operation. The control op-
erations can be anything, including unitary transformations, projective mea-
surements, projective measurements followed by a unitary transformation
(like in the example above) and everything in-between. Mathematically, a
control operation As is just a (trace non-increasing) CP quantum map (as
described in Sect. 2). In a dilated picture the final state is related to the
control operation as the following:

ρ′ = tre{U(As ⊗ Ie[ρ0se])U †} ≡ M[As] , (33)

where we have defined the superchannel M [60], a linear operator that maps
preparations to final states. From here on we omit the subscript s on the
control operation As, and assume it only acts on the system.

From (33), it is clear that the superchannel is linear in the same way as
E , as argued at the beginning of Sect. 2. The set of all control operations is
isomorphic to the set of positive d2 × d2 matrices of trace less than or equal
to d (the B forms of control operations). Henceforth, whenever we write A,
we always mean this representation of the control operation, if not explicitly

hOn the other hand, it is possible to construct a meaningful map where all preparations
are projective [48], or with any other restricted set of preparations [57], when these are
correctly accounted for.
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S. Milz, F. A. Pollock, and K. Modi

stated otherwise. With this, by taking the square root of the initial state and
combining it with U we can write the action of M

M[A] =
∑

α

µαAµ†α (34)

with µǫx =
√
λx 〈ǫ|U ⊗s |Ψx〉Ts and α = ǫx. Here λx and |Ψx〉 are the eigen-

values and eigenvectors of ρ0se respectively and ⊗s and Ts means a tensor
product and transpose (in computational basis) on the space of s only re-
spectively, while the normal matrix product applies to the space of e. The
last equation is an analogue of (29); it is the Kraus representation for the
superchannel, which means that it is CP [60]. In fact, the operators µα
have similar properties to those in Sect. 2.5.3. and it is straightforward to
show that M is trace preserving in the sense that it maps trace preserving
preparations to unit trace matrices. From a mathematical point of view, the
superchannel is a CP map just as the ones encountered in Sect. 2, but with
input and output spaces of different size, i.e.,M : B(H)⊗B(H)→ B(H). The
CP nature of the superchannel also has an operational implication: Suppose
we bring in an auxiliary system a of dimension n and perform an entangling
control operation Asa, before letting s undergo the process in question (i.e.,
interact with e). The complete positivity of the superchannel guarantees that
the final state ρ′sa will always be positive.

Operationally speaking, the superchannel is simply the logical conse-
quence of the input/output picture presented at the very beginning of the
paper; it maps the actual controllable inputs (the preparations A) to the ac-
tual measurable outputs (the final system state ρ′) of the experiment. When
there are no initial correlations, i.e., the initial se state in (33) is a product
state we find that the Kraus operators in (34) become µǫx = Kǫ⊗

√
λsx 〈ψs

x|∗,
where Kǫ are the Kraus operators of the quantum map E in (29), λsx and |ψs

x〉
are eigenvalues and eigenvectors of ρ0s respectively. Subsequently, the action
of the superchannel reduces toM[A] = E(ρs), where ρs is the result of apply-
ing the control operation A on the fiducial initial state ρ0s, i.e., ρs ≡ A[ρ0s].
Consequently, the superchannel formalism includes the experimental situa-
tion depicted in Sect. 1 and naturally extends quantum maps to the more
general case of initial correlations.

Proponents of the NCP map formalism would claim that the superchannel
framework (and our experimenter in the example in the previous subsection)
is setting up a different dynamical experiment each time the system is pre-
pared. However, the superchannel only depends on the initial se state and
subsequent se unitary operation; it is independent of the choice of the con-
trol operation, which is the choice of the experimenter. Moreover, the super-
channel, along with some data processing, contains all NCP maps one could
construct for the process (though still void of any operational meaning) [60].
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An Introduction to Operational Quantum Dynamics

Conversely, the only way the predictions of the superchannel could be repro-
duced in the NCP formalism is by enumerating the NCP maps corresponding
to all (infinitely many) possible preparation procedures.

The construction of the superchannel does not a priori assume linearity or
complete positivity. However, by simply following the operational reality of a
quantum experiment, we have arrived at a map that has these familiar (and
desirable) features. In doing so, we have overcome Pechukas’ theorem; the
superchannel is a consistent, linear, and CP description for dynamics in the
presence of initial correlations. Unlike NCP maps, it has a clear operational
meaning, and has been unambiguously reconstructed in a tomography experi-
ment [78]. Finally, the CP nature of the superchannel allows for the extension
of useful results, such as the Holevo quantity, data processing inequality, and
entropy production inequalities, to the case of initial correlations [95].

We will now show how the superchannel concept can be generalised to
processes involving multiple time steps, before discussing its structure and
representations.

3.2. Multiple time steps and the process tensor

Like the quantum maps E from Sect. 2, the superchannel only accounts for
two time correlations between preparations at the initial time and measure-
ments at the final time. In a more general experiment — for example, in a
multi-dimensional spectroscopy experiment [101] — one may want to know
about correlations across multiple time steps. It is relatively straightfor-
ward to generalise the superchannel to this scenario; imagine that the exper-
imenter performs (CP) control operations A0,A1, . . . ,Ak−1 at the k times
t0, t1, . . . , tk−1 and measures the corresponding output statei ρ′k at tk. This
scenario is illustrated in Fig. 5 (our only assumption is that these operations
can be performed on a much shorter time scale than any other dynamics
of s or se). This setup is very general; for instance, the control operations
could be quantum gates, with the final state corresponding to the outcome
of a quantum computation. Or, perhaps, the process could be a series of
chemical reactions, where the control operations represent the addition of
reactants.

Just as the superchannel is linear in its argument, the final state ρ′k de-
pends in a multilinear way on the operations Aj. Mathematically, this means
that the dynamics is a mapping T k:0 : B(B(H))⊗k → B(H), called a process
tensor [74], whose action can be written as

ρ′k = T k:0 [Ak−1:0] . (35)

iIf the control operations are not trace preserving (and therefore not performable de-
terministically), then the trace of ρ′k gives the probability of performing those operations.
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A0 A1 A2 Ak−1

t0 t1 t2 tk−1

ρ
′

k

Fig. 5: A k-step process. At each time step ti, a CP operation Ai is per-
formed, and the resulting state ρ′k at tk is determined by quantum state
tomography. The scenario in which dynamics is described by the quantum
maps of Sect. 2 is also included in this schematic; it corresponds to a single-
step process, where A0 is the preparation of the input state.

ρ
′

k

ρ
0

se

s

e

A0 A1

U1:0 U2:1

U
k
:k
−
1

Ak
−
1

Fig. 6: (Colour online) Generalised Stinespring dilation. Any k-step process
tensor has a dilated representation, i.e., there exists a set of unitary maps
{U1:0, . . . ,Uk:k−1} and an initial system environment state ρ0se, such that
ρ′k = T k:0[Ak−1⊗· · ·⊗A0] = tre

{
Uk:k−1 (Ak−1 ⊗ Ie) · · · U1:0 (A0 ⊗ Ie) [ρ0se]

}
.

The process tensor T k:0 corresponds to ‘everything that cannot be controlled
by the experimenter’, i.e., the area framed by the orange dotted lines in the
figure.

In terms of their B form, we have Ak−1:0 ∈ [B(H)⊗ B(H)]⊗k and T k:0 be-

comes a mapping T k:0 : [B(H)⊗ B(H)]⊗k → B(H). To keep better track of
the different terms, we give superscripts to the process and subscripts to the
control operations. For the case of independent control operations, Ak−1:0 is
simply given by Ak−1:0 = Ak−1⊗· · · A1⊗A0. In a more general scenario, the
operations could be correlated, either classically (e.g., transformations condi-
tioned on earlier measurement outcomes) or quantum mechanically, through
successive interactions with an ancilla.

In [20, 74] the existence of a generalised Stinespring dilation was proven;
a map T k:0 is consistent with se unitary dynamics if it is linear, CP, trace
preserving in the sense that it maps sequences of trace preserving control
operations to unit trace matrices, and possesses a containment property,
T j:k ⊂ T i:l for all i ≤ j ≤ k ≤ l. The latter property is a causality property
ensuring that future actions do not affect past dynamics. Conversely, the
process tensor can be derived starting from a dilated (unitary) se evolution,
as shown in Fig. 6. We sketch this derivation now.
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An Introduction to Operational Quantum Dynamics

Any se dynamics can be written as

ρ′k = tre

[
Uk:k−1Ak−1 Uk−1:k−2Ak−2 . . .U1:0A0(ρ0se)

]
, (36)

where A act on s alone and the unitary maps U l:k(ρkse) = U l:kρkseU
l:k† = ρlse

act on the full system environment space. Everything in this equation other
than the control operations, i.e., everything in the red box in Fig. 6, can be
considered as part of the process. In analogy to (34), by contracting (‘matrix
multiplying’) the unitary operators in the space of e, along with the initial
state se and taking the final trace, we can define

T k:0
ǫx ≡

√
λx 〈ǫ|Uk:k−1 ⊗s 〈〈Uk−1:k−2|s ⊗s . . .⊗s 〈〈U1:0|s ⊗s |Ψx〉Ts , (37)

where again λx and |Ψx〉 are the eigenvalues and eigenvectors of ρ0se respec-
tively, ⊗s, 〈〈 |s, and Ts mean tensor product, vectorisation (in the sense of
(15)), and transpose on the space of s only. Note that the last unitary matrix
is not vectorised. With this, we can rewrite (36) as

ρ′k =
∑

α

T k:0
α Ak−1:0T

k:0
α
†

= T k:0[Ak−1:0] with α = ǫx , (38)

where T k:0 is the process tensor. This equation is an analogue of (29)
and (34). That is, it is the operator sum (or Kraus) representation for
the process tensor, which (like the superchannel) implies that it is CP [74].
It also clearly satisfies the containment property, i.e., T j:k ⊂ T i:l for all
i ≤ j ≤ k ≤ l and it is trace preserving in the sense that it maps sequences
of CPTP maps to unit trace objects. Indeed, the process tensor reduces to
the superchannel for a single-step process and it is the natural extension of
the formalism in Sect. 2 to more general experimental situations.

Comparable approaches to general quantum stochastic processes were al-
ready developed by Lindblad [51] and Accardi et al. [1, 2], but have not gained
traction with the community of researchers working on open quantum sys-
tems. The process tensor framework straightforwardly leads to several im-
portant results, most notably an operationally well-defined quantum Markov
condition, measures of non-Markovianity (which we will briefly expand on
below) [74], and a generalisation of the Kolmogorov extension theorem to
general quantum stochastic processes [2].

Finally, similar mathematical structures (maps whose inputs and outputs
are quantum maps themselves) have also been developed in other contexts,
and are referred to as quantum combs [19, 18, 20], causal automata/non-
anticipatory quantum channels [47, 15], process matrices for causal modelling
[27, 68], causal boxes [75] and operator tensors [39, 38]. Most of the results
for the process tensor, including the representations we will now go on to
describe, will also be applicable (or, at least, adaptable) to many of these
frameworks.
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3.3. Structure and representation of the superchannel and pro-
cess tensor

Since the process tensor, and hence the superchannel, are CP maps of the sort
described in Sect. 2.1 with input and output spaces of different size, we are
able to represent them mathematically in all the ways discussed in the first
half of this paper. For the most part, these representations are the same as for
the quantum maps case (with the same mathematical properties), however it
is insightful to present them explicitly. Given that the superchannel is simply
a single step process tensor, its representations are a special case of what we
will now present for an arbitrary number of time steps.

Performing quantum process tomography of process tensors is very sim-
ilar to the usual case. At each time step j we choose a basis set of linearly
independent operations {Âij}d

4

ij=1. The index ij denotes both the basis el-

ement, as well as the time step, i.e., Âij is the i-th basis element at time
step j. For example, at time step 3, we would have {A13 ,A23 , . . . ,Ad43

}. The

basis elements at different times need not be the same, {Âij} 6= {Âij′}. An
arbitrary control operation Aj at time step j can be expressed as a linear

combination of the basis operations Aj =
∑

ij
cij Âij . The basis operations

come with a dual set {∆̂ij} satisfying

tr[Âij∆̂
†
i′j

] = δij i′j .

From the local basis, we can construct a basis sequence as

Âik−1:0
= Âik−1

⊗ · · · ⊗ Âi0 ,

where ik−1:0 = (ik−1 . . . i0). Naturally, we have

tr[Âi′k−1:0
D̂
†
ik−1:0

] = δi′k−1:0ik−1:0
,

where D̂ik−1:0
= ∆̂ik−1

⊗ . . . ⊗ ∆̂i0 . As before, using the basis operations we
can express any (possibly correlated) sequence of control operation as

Ak−1:0 =
∑

ik−1:0

cik−1:0
Âik−1:0

.

Tomography then involves performing a set of experiments where we ap-
ply each basis sequence of control operations Âik−1:0

and measure the corre-

sponding state ρ̂′
k|ik−1:0

. In analogy with (8) we can then write the action of

the process tensor as

T k:0[Ak−1:0] =
∑

k

ρ̂′k|ik−1:0
tr[D̂

†
ik−1:0

Ak−1:0] . (39)
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An Introduction to Operational Quantum Dynamics

The set {D̂ik−1:0
, ρ̂′k|ik−1:0

} constitutes the tomographic representation of the
process tensor.

From this, we can use the results of Sect. 2.2 to write down the process
tensor in Sudarshan’s A and B forms, in analogy to (12) and (16), as

T k:0
A =

∑

k

ρ̂′k|ik−1:0
× D̂

∗
ik−1:0

and T k:0
B =

∑

k

ρ̂′k|ik−1:0
⊗ D̂

∗
ik−1:0

. (40)

Similarly from the operator sum representation, given in Eq. (36), we can
write these in terms of Kraus operators (in analogy to (23) and (22)):

T k:0
A =

∑

α

T k:0
α ⊗ T k:0

α
∗

and T k:0
B =

∑

α

T k:0
α × T k:0

α
∗
. (41)

Just as in the case of quantum maps E , T k:0
A is a (rectangular) matrix which

acts on a vectorised input — in this case, it is the B form of the control
operations Ak−1:0 that is vectorised. In contrast, T k:0

B is a square matrix,
whose positivity depends on the complete positivity of the process tensor. It
acts as

T k:0[Ak−1:0] = trin[T k:0
B (1lout ⊗AT

k−1:0)] . (42)

In fact, analogously to the case of quantum maps, the B form can be seen as
arising from a generalisation of the CJI to process tensors [74]. The isomor-
phism can be implemented operationally by preparing k maximally entangled
states |I〉 (introduced at the beginning of Sect. 2.3) and swapping the system
with one part of the maximally entangled state at each time step. Defining
Ψab as the superchannel describing an initial state |I〉ab that later evolves
under an identity map (i.e., with B form IB⊗|I〉〈I |), we can write down the
CJI:

Υk:0
T = T k:0

s ⊗Ψ⊗kab [S⊗ksa ⊗ I⊗kb ] , (43)

where Ssa is the swap gate on sa and Ib is the identity map on b (see Fig. 7).
The resultant 2k + 1 body state Υk:0

T is element by element identical to the
process tensor. Again, using the equivalence of the B form and the Choi
state, the action of the map can be written as

T k:0[Ak−1:0] = trin[Υk:0
T (1lout ⊗AT

k−1:0)] .

Since pairs of subsystems of the Choi state Υk:0
T correspond to different

time steps, correlations between them directly relate to memory effects in the
process. That is, temporal correlations in T k:0 become spatial correlations in
Υk:0
T . This can most clearly be seen by decomposing the B form/Choi state

as

Υk:0
T = Ek:k−1B ⊗ Ek−1:k−2B ⊗ · · · ⊗ E1:0B ⊗ ρ0

+
∑

j>j′

χj,j′ +
∑

j>j′>j′′

χj,j′,j′′ + . . .+ χk,k−1,...,1,0 , (44)
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U1:0 U2:1

U
k
−
1
:k
−
2

U
k
:k
−
1

U1:0 U2:1

U
k
−
1
:k
−
2

U
k
:k
−
1

ρ
0

se
ρ
0

se

|I〉

|I〉

|I〉

|I〉

tr0̄(Υ
k:0

T
)

tr1̄(Υ
k:0

T
)

tr
k−2

(Υk:0

T
)

tr
k−1

(Υk:0

T
)

Υk:0

T

a

b

a

b

a

b

a

b

Fig. 7: (Colour online) CJI of a process tensor. At each time ti, one half
(‘the a part’) of a maximally entangled state is fed into the process by means
of a swap operation (depicted by the black vertical lines). The resulting
many-body quantum state (after tracing over the degrees of freedom of the
environment) is the Choi state Υk:0

T of T k:0. This generalised CJI includes
the traditional CJI for quantum maps as well as the CJI of superchannels
as special cases. The brackets denote the degrees of freedom of Υk:0

T that
correspond to the partial traces mentioned below (44). The remaining degrees
of freedom — i.e., the top and bottom wire — correspond to trk̄(Υk:0

T ).

with trji [χjn,...,j1 ] = 0 ∀ 1 ≤ i ≤ n, and where the indices in the sums
represent pairs of subsystems belonging to the input of one time step and
the output of the previous one (with the exception of j = 0, which refers a
single subsystem – the initial input). We denote by trj̄ the partial trace over
all subsystems but the ones that correspond to the dynamics from time j−1
to j (see Fig. 7). With this, we obtain Ej:j−1B = trj̄[Υ

k:0
T ], the B form of a

quantum map connecting an adjacent pair of time steps, and ρ0 = tr0̄[Υk:0
T ] —

the initial, pre-preparation state of the system undergoing the process. The
traceless matrices χ encode correlations between time steps, and it is precisely
these which will contract with the B forms of measurement operations at
different time steps in (42) to produce multi-time correlation functions.

3.4. Quantum Markov processes and measuring non-Markovianity

If a classical stochastic process has no correlations between observables at
different times, beyond those mediated by adjacent time steps, then it is
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An Introduction to Operational Quantum Dynamics

called Markovian; formally

P (Xk, tk|Xk−1, tk−1, . . . ,X0, t0) = P (Xk, tk|Xk−1, tk−1) ∀ k . (45)

Generalising (45), to give a necessary and sufficient condition for a quantum
process to be Markovian has been a difficult task. In recent years, researchers
have built a zoo of “measures” of non-Markovianity [80, 11]. Most of these
measures are based only on necessary conditions for classical processes to be
Markovian.j For instance, the trace distance between two probability distri-
butions must monotonically decrease under a classical Markov process. This
should also be true for any pair of density matrices undergoing a quantum
Markov process. Conversely, if the trace distance between any two density
matrices does not decrease monotonically, then it implies that the underlying
process is non-Markovian. A measure of non-Markovianity can be defined by
summing up the non-monotonicity in time [10]. Other witnesses are based
on: how quantum Fisher information changes [52, 33]; the detection of ini-
tial correlations [56, 83]; changes to quantum correlations [53]; positivity of
quantum maps [98, 25]; and, most notably, witnessing the breakdown of the
divisibility of a process [79]. These witnesses are turned into measures by
quantifying the degree to which they witness the departure from Markov
dynamics.

All of these methods are perfectly valid ways of witnessing memory effects.
Unfortunately though, they often lack a clear operational basis. Moreover,
different measures of non-Markovianity do not always agree with each other,
neither on the degree of non-Markovianity, nor on deciding whether a given
process is Markovian [24]. In other words, each of them fails to quantify
some demonstrable memory effects. These inconsistencies have led some
researchers to conclude that there can be no unique condition for a quantum
Markov process.

This is not correct. Using the process tensor framework it is possible
to write down a necessary and sufficient condition for quantum Markov pro-
cesses [74], that is mathematically unique and operationally sound. It encom-
passes all the other definitions by objectively identifying all possible temporal
correlations responsible for all possible memory effects – including the cor-
relations missed by the methods listed above (see examples in [74]). For
classical dynamics, this quantum condition reduces to the Markov condition
given in (45).

We can use the expansion in (44) to make this condition more explicit. A
process whose Choi state can be written as Υk:0

T = Ek:k−1B ⊗· · ·⊗E1:0B ⊗ρ0 (with
all χ operators zero) will only lead to joint probability distributions which

jSome of these measures are claimed to be necessary and sufficient, but only with respect
to a quantum Markov condition which does not reduce to the classical one in the correct
limit.
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satisfy the Markov property for any choice of measurements (not necessarily
projective) at different time steps,k and we could take the product form as
a definition for a quantum Markov process. Operationally, this means that
a causal break in the system’s evolution at any point prevents information
flowing from past to future, see [74] for a rigorous derivation.

From this Markov condition we can derive a family of measures for non-
Markovianity that are operationally meaningful for specific tasks. For in-
stance, through (44), any process can be related to a corresponding Markov
process T k:0

Mkv (with Choi state Υk:0
TMkv

= Ek:k−1B ⊗ · · · ⊗ E1:0B ⊗ ρ0) by simply
setting the correlation terms to zero (removing the χ’s). The total ‘amount’
of memory in the process, or the degree of non-Markovianity N can then be
quantified by the distance of its Choi state from that of its Markov counter-
part:

N = D
(

Υk:0,Υk:0
TMkv

)
(46)

where D could be any (pseudo) distance measure on quantum states, such
as the trace distance. In particular, when relative entropy is chosen as the
distance measure in (46), the measure has a clear interpretation in terms of
the probability of surprise Psurprise = e−nN . That is, suppose we have an
experimental process that is non-Markovian and a model for this experiment
that is Markovian. Then, after n experiments how surprising are the results,
given our Markov assumption? If N is small, then it will take many exper-
iments (large n), before we observe statistically significant deviations in our
data from the assumed model, and if N is large then we are surprised after
only a small number of experiments n.

Different choices of distance will lead to different operational meanings
for N . Other measures of non-Markovianity could, for instance, indicate how
much of the original state of s can be recovered, or how many extra degrees
of freedom are needed to model the dynamics of s to a desired accuracy.

4. Discussion and Conclusions

In this paper, we have laid bare the operational motivation and underlying
structure of quantum maps. We began by describing the familiar quantum
maps that act on density operators and transform them into density opera-
tors, before going on to derive and relate their most widely used forms, and
discuss their most important properties. While we worked only with finite
dimensional systems, all of the maps presented here can also be extended to
the case of infinite dimensional systems [31, 35].

Next, we described the problem of characterising quantum dynamics in
the presence of initial correlations between a system and its environment.

kThough the distributions for different choices of measurements will not be compatible
in general (this could be seen as the defining feature of quantum theory).
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An Introduction to Operational Quantum Dynamics

We outlined the attempts to describe such dynamics with not completely
positive maps and the operational shortcomings of this approach. Then we
presented a resolution to this problem in terms of the quantum superchannel,
which generalises the quantum maps from the first section of the paper, and
has all of the same desirable properties, like complete positivity and trace
preservation. The development of the superchannel paved the way for us to
introduce the process tensor framework, which can be used to describe any
quantum process – importantly, including its multi-time correlations. Major
results enabled by this framework are a necessary and sufficient condition
for quantum Markov processes and, consequently, a family of operationally
meaningful measures for non-Markovianity.

The different mathematical representations we have presented arise from
the statistical and linear algebraic framework on which quantum theory is
based. In fact, they could also be used to describe a more general linear
theory, such as one based on quaternionic vector spaces [37], as well as other
generalised statistical theories [7, 54]. It is worth mentioning tensor network
calculus as a helpful tool for graphically representing quantum maps (and
other linear algebraic objects). Diagrammatic proofs of the statements in
this paper more clearly reveal the connections between different representa-
tions, as well as the similarity between the approaches of the first and second
sections of this paper. For a comprehensive introduction in the context of
open quantum systems theory, see [100].

The process tensor is a powerful tool, and we have only just scratched the
surface when it comes to unsolved open quantum dynamics problems. There
remains a great deal of work to be done in order to better understand the
properties of non-Markovian quantum processes. This includes, but is not
limited to, characterising the length and strength of memory and investigat-
ing typical properties of random multi-time processes. It remains to be seen
whether something like the process tensor can be derived for setups where
continuous control is applied, or where the experimenter’s operations also
influence the environment to some degree.

It should also be possible to use the process tensor framework to develop
new methods for simulating open quantum systems. An approach based on
tomographically reconstructed quantum maps has already been shown to be
efficient [16, 84, 73], and it seems a natural step forward to generalise this to
the multi-time case. Furthermore, such a method would be easy to adapt into
a simpler approximate description; the process tensor quantifies exactly the
observable influence of the environment on a system, therefore its structure
should indicate exactly which quantities can be safely neglected in the global
dynamics.
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Appendix A: Dual Matrices

In this appendix, we prove the existence of a set of dual matrices for any
set of linearly independent matrices ρi. Note that this proof is a slight gen-
eralisation of the one presented in [61] for the case of Hermitian matrices
ρi.

LEMMA A.1 For any set of linearly independent matrices {ρi}, there exists

the dual set {D̂i} satisfying tr[D̂†iρj ] = δij .

Proof. Write ρi =
∑

j hijΓj , where hij are complex numbers and {Γj} form a

Hermitian self-dual linearly independent basis satisfying tr[ΓiΓj ] = 2δij [14].
Since {ρi} constitute a linearly independent set, the columns of matrix H =∑

ij hij |i〉〈j| are linearly independent vectors, which means that H has an

inverse. Let the matrix F
† = H

−1, then HF
† = 1l, implying that the columns

of F∗ are orthonormal to the columns of H. We define D̂i = 1
2

∑
j fijΓj , where

fij are elements of F. �

Our definition of dual matrices differs from the one in [61] by an adjoint
to make the relation to the scalar product explicit. As already mentioned,
the dual matrices are generally not all positive, even if the basis {ρi} only
consists of positive matrices. However, for the case where all basis matrices

ρi are Hermitian, we have D̂†i = D̂i. Furthermore, the duals satisfy
∑

i D̂
†
i =∑

i D̂
∗
i = 1l if all ρi are of unit trace. We have

tr
(∑

i

D̂†i ρ
)

=
∑

i,j

rj tr(D̂†iρj) =
∑

j

rj = tr(ρ) ∀ ρ ,

where we have used ρ =
∑

j rjρj . The only matrix M that satisfies tr(Mρ) =

tr(ρ) ∀ ρ is the identity matrix.
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A 87, 042301(2013).

[13] F. Buscemi, Phys. Rev. Lett. 113, 140502 (2014).

[14] M. S. Byrd and N. Khaneja, Phys. Rev. A 68, 062322 (2003).

[15] F. Caruso, V. Giovannetti, C. Lupo, and S. Mancini, Rev. Mod. Phys. 86, 1203
(2014).

[16] J. Cerrillo and J. Cao, Phys. Rev. Lett. 112, 110401 (2014).

[17] A. M. Childs, I. L. Chuang, and D. W. Leung, Phys. Rev. A 64, 012314 (2001).

[18] G. Chiribella, G. M. D’Ariano, and P. Perinotti, Phys. Rev. Lett. 101, 060401 (2008).

[19] G. Chiribella, G. M. D’Ariano, and P. Perinotti, Europhys. Lett. 83, 30004 (2008).

[20] G. Chiribella, G. M. D’Ariano, and P. Perinotti, Phys. Rev. A 80, 022339 (2009).

[21] M. D. Choi, Can. J. Math. 24, 520 (1972).

[22] M. D. Choi, Lin. Alg. Appl. 10, 285 (1975).

[23] J. M. Chow, J. M. Gambetta, L. Tornberg, J. Koch, L. S. Bishop, A. A. Houck, B. R.
Johnson, L. Frunzio, S. M. Girvin, and R. J. Schoelkopf, Phys. Rev. Lett. 102, 090502
(2009).
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